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Aritmética de Numeros Reais

1.1 - NOmeros em contagens e medidas

Nosso primeiro contato com nimeros se da através dos inteiros ndo negativos, aqui chamados de
ntimeros naturais' (conjunto com simbolo N).

Na lingua portuguesa (assim como na maioria das linguas latinas), utilizamos os algarismos hindu-
ardbicos em um sistema posicional para representar quantidades. Os tragados dos trés primeiros
algarismos nao nulos, 1, 2 e 3, trazem em si lembretes dos valores que eles representam.

| = =

Os ntimeros naturais sdo usados para expressar a cardinalidade ou quantidade de elementos em um
conjunto, em muitos contextos. Por exemplo, niimeros naturais podem expressar quantos alunos ha em
sua turma ou quantos quildémetros separam as cidades de Crato e Arneiroz.

Rapidamente, surge a necessidade de realizar operacées com os niimeros naturais, como a adicao,
multiplicacdo e divisdo, por exemplo. Quando somamos ou multiplicamos dois nimeros naturais, o
resultado, isto é, a soma ou o produto, sdo sempre nimeros naturais, também. Entretanto, ao realizar
subtragoes, mesmo partindo de niimeros naturais, o resultado pode ser um niimero negativo, como em

3—5=-2.

Da mesma forma, o resultado da divisao entre dois niimeros naturais (com divisor ndo-nulo) pode ser
um nimero nao inteiro, como no seguinte exemplo:

3:5=0,6.

1.1.1 = NGmeros inteiros

Portanto, a operacao de subtracao fica bem definida no conjunto dos niimeros inteiros Z, que amplia
o conjunto dos niimeros naturais N. De fato, Z inclui os nimeros naturais nao-nulos

1,2,3,4,...,
0 zero e os nimeros inteiros negativos
v, —4,-3,-2, —1.

Os ntmeros inteiros podem ser representados geometricamente na reta numérica: o nimero 0 marca
um ponto de referéncia na reta, chamado de origem: os nimeros inteiros positivos sdo representados
por pontos marcados a direita da origem; os nimeros inteiros negativos sao representados por pontos
marcados & esquerda da origem. A distancia entre pontos representando dois niimeros consecutivos (por
exemplo, 3 e 4; ou —4 e —3) é sempre igual a 1. Veja que os pontos estdo espagados por intervalos de
mesmo comprimento na seguinte figura:

<} 4 4 4 4 1 4 4 4 4
<+ t t t t 1 t y y y

4 4
t t

L
T
-9 -8 -7 -6 -5 -4 -3 -2 -1 ( 1 2 3 4

Y

Ut =+
o
~
o
©

Figura 1.1: inteiros sobre a reta.

Dizemos que os pares de niimeros —1 e 1, —2 e 2, etc., sdo opostos ou simétricos. O simétrico de 0 é
o préprio 0. O wvalor absoluto ou mddulo de um nimero inteiro n, denotado |n|, é definido da seguinte
forma

! Alguns autores nio consideram o niimero zero como um natural. Isso é uma mera convencio, mas é importante que
autores, alunos e professores deixem suas escolhas claras para nao causar confusdo na comunicacio das ideias.
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| Sec_;do 1.1

o |n| é o oposto de n, se n é um ntmero inteiro negativo. Por exemplo, | — 3| = 3.
o |n| é o préprio nimero n, se é um nimero inteiro positivo. Por exemplo, |3| = 3.

Resumindo, niimeros opostos tém o mesmo moédulo, que pode ser interpretado como a distancia ndo
orientada da origem aos pontos que os representam: ou seja, os pontos que representam os nimeros 3 e
—3 estdao & mesma distancia da origem. Podemos representar o nimero oposto a um dado ntmero n
como sua reflezdo em torno do 0, isto é, em torno da origem da reta numérica, como na figura a seguir:

o -~
L SN
7 . B N
o ) % L
s N 3 B B \
Y ‘?(—\{b \
<« L L L L ) L - M AED SN W ] : 1 L L L L .
<+ u u u u t u et + \ 4 t t T t 1 u u t t +—>
3

-9 -8 -7 -6 —_5 —4 -3 -2 -1 (Q 1 2

Figura 1.2: nimeros opostos obtidos por reflexao

A adicdo de ntimeros inteiros pode ser visualizada por meio de translagoes & esquerda e a direita
na reta numérica: por exemplo, a soma dos nimeros inteiros positivos 2 e 3 pode ser representada do
seguinte modo:

e partimos do ponto 2 e transladamos 3 unidades para a direita, ou
e partimos do ponto 3 e transladamos 2 unidades também para a direita.

RN
e T L IR S S e T S e
-9 8 =7 =6 _5 -4 -3 -2 -1 9 1 2 3 4 5 6 7 8 9
+2

Figura 1.3: interpretagdo geométrica de 3+ 2 =2+ 3 = 5. Ambas as setas terminam no ponto 5.

Agora, a soma do nimero inteiro positivo 3 e do ntimero inteiro negativo —2 pode ser representada
geometricamente das seguintes formas:

e partimos do ponto 3 e transladamos 2 unidades para a esquerda,
e partimos do ponto —2 e transladamos 3 unidades para a direita.

Deste modo, justificamos geometricamente o seguinte resultado

34 (—2)=(-2)+3=1.

-2
e—

<} 4 4 4 4 1 4 4 4 4 1 4 4 4 4
t t t 1 t t t t 1 t t t t

-9 -8 -7 -6 —_5 -4 -3 -2 -1 ( 1 2 3 4

(S 5
K
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+3

Figura 1.4: interpretagao geométrica de 3+ (—2) = (—=2) +3 = 1.

Observe, geometricamente, que o oposto do oposto de um ntmero inteiro é o préprio nimero, isto é,
_(_n) =n,
Lo >
—n N -
i = o
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Sec¢do 1.1 -

o que justifica a “regra” de “menos com menos dé mais”, como vemos na escola.

De modo similar, podemos justificar e interpretar, usando transla¢oes, a soma

<} 4 4 4 4 1 4 4 4 1
T T T T T

t t t t t t t t t t
-9 -8 -7 -6 -5 -4 -3 -2 -1 ( 1 2 3 4 5 6 7 8 9

+2
Figura 1.5: interpretagdo geométrica de 2+ (—3) = (=3) +2 = —1.
Desta vez, para calcular a soma dos dois niimeros inteiros negativos —3 e —2, podemos realizar um
dos seguintes procedimentos:

e partimos do ponto —3 e transladamos 2 unidades para a esquerda,
e partimos do ponto —2 e transladamos 3 unidades para a esquerda,

0 que justifica, a partir da figura, o seguinte resultado

-3+ (-2)=-2+(-3)=-5

1 4 4 4 4 1 4 4 4 4 >
T T T T T T T T T T —>

—2
| | | 1 | | |
t t t t 1 t t t t
-9 -8 -7 -6 -5 -4 -3 -2 -1 ( 1 2 3 4 5 6 7 8 9

l -3

Figura 1.6: interpretagdo geométrica de (—3) + (—2) = (—=2) + (—3) = —5.

Os nuimeros inteiros negativos como —2 e —3 sdo colocados entre parénteses nessas expressoes para
nao confundirmos o sinal +, que representa a operacao de adicdo, e o sinal —, que faz parte do
préprio nimero! A divida que vocé deve ter, naturalmente, é: qual a relacao do sinal “—” em “—2”
com o sinal de subtracao que vimos anteriormente? Vamos esclarecer este ponto logo adiante.

Para tornar mais aceitdveis essas regras de sinais da adicdo de ntimeros inteiros, podemos usar um
exemplo com valores monetdrios: receitas (ganhos, lucros, poupancas) sdo representadas por niimeros
inteiros positivos; despesas (gastos, prejuizos ou dividas) sdo representadas por niimeros inteiros negativos.
Assim sendo, observemos que

(i) quem tem 30 reais e ganha 20 reais, passa a ter 30 + 20 = 50 reais;

(ii) quem tem 30 reais e gasta 20 reais, passa a ter 30 + (—20) = 10 reais, ou

(iii) quem deve 20 reais e ganha 30 reais, pode pagar sua divida e ficar com (—20) + 30 = 10 reais;

(iv) quem tem 20 reais e gasta 30 reais, contrai uma divida: 20 4+ (—30) = —10, ou seja, 10 reais de
divida, por isso, 10 reais “negativos”; ou

(v) quem deve 30 reais e ganha 20 reais, pode diminuir sua divida de 30 para 10 reais: (—30) + 20 =
—10;

(vi) quem deve 30 reais e gasta mais 20 reais, aumenta sua divida para (—30) + (—20) = —50 reais
“negativos”, isto é, 50 reais de dividas.

Nos exemplos acima, percebemos que quando somamos um ndmero inteiro negativo a um nimero inteiro
positivo, estamos, de fato, efetuando uma subtracdo. Por exemplo

30 + (—20)
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| Sec_;c"lo 1.1

é, de fato, igual a
30 — 20 = 10.

Da mesma forma,
(—20) + 30 = 30 — 20 = 10.

Na escola, normalmente, isto é ensinado como uma “regra” em que “mais com menos dd menos”.
Podemos resumir esta observacdo definindo a subtragao de dois ntimeros inteiros:

A diferenca de dois nimeros inteiros m e n, nesta ordem, é definida como a soma de m com o oposto

7

de n, isto €,

m—n=m+ (—n).

Como exemplos, temos

e 4—3=4+(-3) =1 (partindo de 4, transladamos 3 unidades para a esquerda. Ou: tenho 4
reais e gasto 3, ficando com 1 real);

e 3—4=3+(—4) = —1 (partindo de 3, transladamos 4 unidades para a esquerda. Ou: tenho 3
reais e gasto 4, ficando com 1 real de divida).

e 3—(—4) =34+ (—(—4)) =3+ 4 =7 (lembre que o oposto do oposto de 4 é o préprio 4, ou seja
—(—4) =14).

1.1.2 - NGmeros racionais

Agora, discutimos mais uma “ampliacdo” do nosso conjunto de nimeros, necessiria para que
possamos definir a divisdo de um nimero inteiro qualquer por outro nimero inteiro nao-nulo dado.
Como vimos, a divisdo ezxata

8
8:4 ou -
4
gera um numero inteiro (de fato, um nimero natural), a saber, o nimero 2, uma vez que
8 = 4x2.
No entanto, ao dividirmos
9:4 ou -
ndo obtemos um ntmero inteiro. De fato,
9=4x2+41,

ou seja, temos um resto, igual a 1, nesta divisdo. Escrevendo o quociente e o resto em termos de fragoes,

temos:
9_8+1_2+1
4 4 4 4

Ou seja, ao dividirmos o resto 1 por quatro, geramos uma fragao, 1/4, da unidade. Ntimeros desta forma
nao sdo inteiros. Para dar sentido a estas divisdes nao-exatas, cujos resultados nao sdo nimeros em Z,
definimos o conjunto Q dos niimeros racionais.

Na sequéncia, vamos discutir, resumidamente, os nimeros racionais por meio de exemplos. Iniciamos
observando que as fragoes

5 4 3 2 1 1 2 3 4 5
"’_17_17_17_1’_217 07 Z’ Z? ZL) Z: Zv
(léem-se “menos dois quartos”, “menos um quarto”, “um quarto”, “dois quartos”, e assim por diante)
representam pontos que dividem a reta numérica em segmentos de comprimentos iguais. Na seguinte

reta numérica

FNTE .
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Secdo 1.1 |

a distancia entre os pontos 0 e 1, igual a 1 unidade de medida, ¢é 4 vezes maior do que a distancia do
ponto 0 ao ponto }1, que corresponde a fragao

1
4
da unidade de medida. Assim,
4X1:é:1
4 4
Da mesma forma, de acordo com a figura,
2 10 1
1

[
—
[\

a distancia entre os pontos 0 e % é dada pela fracao % da unidade de medida e é 3 vezes maior do que a

distancia entre os pontos 0 e }l, ou seja,

1 3
3xo = 2.
171

De modo geral, dado um ntmero natural m, a fragao
m

4
representa um ponto cuja distancia a 0 é m vezes maior do que a distdncia de 0 a é—i, ou seja,

m_ 11 1

LTy T Ty
—_——
m vezes

Por exemplo, veja na figura que a distancia do ponto 0 ao ponto 2 é 8 vezes maior do que a distdncia
do ponto 0 ao ponto }1, sendo dada por

8 1
— = 8x—-
4 4
Observe também que essa distancia é 2 vezes maior que a distancia do ponto 0 ao ponto 1, ou seja,
8
1=
o que explica, geometricamente, que a fragao % expressa a divisdo 8 : 4. Marcamos, na seguinte figura,
algumas das fracoes da forma 7:
-2 -1 1 2
=9 =8 =T =6 =5 =4 =3 =2 =1 ( 1 2 3 4 5 6 7 8 9
4 4 4 4 4 4 4 1 4 4 4 4 4 4% 4 4 1 14

|co

Observe, na figura acima, que a distancia de 0 a % ¢ dada pela distancia de 0 a § mais a distancia
de % a %, isto é,
9_8+1_2+1
44 4 7 4

Esta é, como vimos antes, uma forma de expressar a divisGo com resto
9 =4x2+4 1.

Observe, também, que a distancia de 0 a ;QL ¢ metade da distancia de 0 a 1, isto é,

2 1

4 2

Geometricamente, o ponto % é o ponto médio entre 0 e 1 = j—i, ou seja, o ponto % divide o segmento de
reta de 0 a 1 ao meio. A igualdade

2 1
4 2
é exemplo de uma equivaléncia de fracoes.
P i1  EX ::._ﬂ;\___. I_“L" =
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De modo geral, dado um nimero natural n, diferente de zero, a fragao
1
n

representa um ponto na reta numérica, entre os pontos 0 e 1, tal que a distancia de 0 a 1 é n vezes
maior que a distancia de 0 a % Dito de outro modo, as fracoes

il A 9

S|
S

3

dividem o segmento de 0 a 1 em n segmentos de comprimentos iguais. Dado outro niimero natural m,

a fragcao
m

n

representa um ponto cuja distancia a 0 é igual a m vezes a distancia de 0 ao ponto %, ou seja,

m 1 1 1
— = mx—=——4...+ —
n n n n

——

mvezes
O ntimero m é chamado de numerador e o nimero n de denominador. Finalmente, a fracao

m —m
n n

corresponde ao ponto na reta numérica simétrico a “* com respeito a 0.

1.1.3 - Equivaléncia de fracées e nimeros racionais
Temos, entdo, os nimeros racionais como pontos na reta numérica associadas aos niimeros inteiros
ooy =5,—4,-3,-2,-1,0,1,2,3,4,5, ...

e as fracoes

543 2 1,1 2 3 45
) 27 2a 27 27 27 ) 27 27 2a 27 27'
5 43 2 1,1 2 3 45
) 37 37 37 3? 37 3 3? 37 3a 37 37~

5 4 3 2 1 1 2 3 4 5
7__13__Za__17__17—__7 07 Zv Z? Za Za Zv'

e assim por diante.

Diferentes fragoes podem representar um mesmo nidmero racional. De fato, fragdes equivalentes
estao associadas a um mesmo ponto na reta numérica e correspondem a uma dada distancia do ponto 0,
expressa em diferentes unidades de medida. Por exemplo, as fracoes

2 3

—_ e —

4 6

sdo equivalentes por representarem o mesmo ponto na reta numérica. De fato, temos:

O P
| | | | | | | | | ‘
] T T I T T i i | |
O p
: l I ﬁ k k k
0 1/4 2/4 3/4 1 5/4 6/4
s : itk B oo
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Sec¢do 1.1 -

Na primeira reta, dividimos o segmento de 0 a 1 em 6 partes iguais: a unidade de medida passa a ser
1/6 da unidade inicial. Nesta nova unidade, a distdncia do ponto O, associado a 0, e o ponto P é igual
a 3/6. Na segunda reta, dividimos o segmento de 0 a 1 em 4 partes iguais: a unidade de medida passa a
ser 1/4 da unidade inicial. Nesta outra unidade, a distdncia do ponto O, associado a 0, e o ponto P é
igual a 2/4. Logo, geometricamente, comprovamos que

2 3

4 6

correspondem ao mesmo ponto na reta, isto é, a0 mesmo nimero racional.
Note que, se multiplicarmos cada um dos lados dessa igualdade por 12, que é um maltiplo comum de

4 e 6, a igualdade se mantém:

9 3
12x= = 19x°.
1T %

Esta segunda igualdade é verdadeira, pois, do lado esquerdo, temos
12><§ = 12X2X}L = 2><12><% = 2x3 =6,

enquanto o lado direito é dado por

12X% = 12X3Xé = 3><12><% =3x2=26.

Como a segunda igualdade é verdadeira, a primeira também o é. Logo, “comprovamos” que as fracoes
sao equivalentes.

De modo geral, as fragoes 7 e %’ sdo equivalentes, isto é, a igualdade

m __p
n q

é verdadeira se, e somente se,
gxm = pxn.

Nestas expressoes, m,n,p € ¢ sdo nimeros naturais, com n e ¢ diferentes de 0.

De fato, basta multiplicarmos cada um dos lados da igualdade pelo produto gxn, obtendo
q><n><E = q><n><£7
n

igualdade que pode ser reescrita como

1 1
QXMXNX— = NXPXGX—,
n

donde concluimos que
gxm = nxp.

Usando a definicdo acima de equivaléncia de fra¢Ges, vamos, agora, apresentar algumas regras
praticas para verificar se duas fracoes sdo equivalentes.

Observacdo 1.1 Se multiplicarmos ou dividirmos o numerador e o denominador de uma fracdo por
um mesmo numero a natural diferente de zero, obtemos uma fracao equivalente. De fato,

m mxa

n nxa’

visto que
MXNXA = NXMXQA.

Da mesma forma,

Rt ] Eﬂ_;_, _-:{a_ Hf‘f‘ ._ﬂlv' PACTO
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I EEEEEEEEEE—— SGC}@O 1.1

Neste caso, a deve ser um divisor ou fator comum de men com m:a=pen:a=q. Assim, temos:

m __pXxa _p m:a

n gqxa q¢ n:a’

como queriamos demonstrar.

3

Por exemplo, no caso das fragoes % e g, multiplicando tanto o numerador quanto o denominador por

3 e por 2, respectivamente, obtemos:

2_2><3_ 6

4 4x3 12
(§]

3_32_ 6

6 6x2 12’

o que corresponde, na reta, a particionarmos cada segmento de comprimento ;11 em 3 partes e cada

segmento de comprimento % em 2 partes, conforme representado nas seguintes figuras:

0 1/6 2/6 3/6 4/6 5/6 1 7/6 8/6 9/6

Note que os comprimentos realgados nas duas retas numéricas sdo iguais, o que justifica, geometrica-
mente, a equivaléncia das fragdes. Observe, também na figura, que

6 9

4 6

Podemos, portanto, particionar um dado segmento (por exemplo, o segmento de 0 a 1) em mais
segmentos de comprimento menor, multiplicando numerador e denominador por um mesmo fator.
Inversamente, podemos particionar um dado segmento em menos segmentos de comprimento maior,
dividindo numerador e denominador por um mesmo fator. Por exemplo, consideremos as fragoes 1% e

12 ' representadas nas retas numéricas abaixo:

16°
0 s 1
12
16

Dividindo tanto os numeradores quanto os denominadores das fracoes 1% e % por 3 e por 4,

respectivamente, obtemos:

9:3 3

12:3 4
(§]

12:4 3

16:4 4

o que significa, geometricamente, termos segmentos com comprimentos 3 vezes maior na primeira reta e
4 vezes maior na segunda:

0 9 1
12
0 | | 9 _3 1
12 — 4
P i1  EX ::._ﬂ;\___. I_“L" =
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Recapitulando, quando multiplicamos o numerador e o denominador de uma fracdo por um mesmo
numero natural diferente de zero, aumentamos a quantidade de partes nas quais um dado segmento
¢é dividido, bem como aumentamos proporcionalmente a quantidade de partes tomadas. Por outro
lado, quando dividimos o numerador e o denominador por um mesmo natural diferente de zero,
diminuimos proporcionalmente essas quantidades de partes. Em ambos esses casos, obtemos uma
fracado equivalente a inicial.

A equivaléncia das fracbes que vimos acima pode ser representada utilizando-se “pizzas” ou barras
como segue. Por exemplo, as fatias destacadas das pizzas

ceee

9

12
representam as fracdes equivalentes indicadas abaixo de cada uma delas. Essas mesmas fracées podem
ser visualizadas nas barras como as partes destacadas, todas de mesmo comprimento:

LI TP T TP PP T T PIT T T |=%
N I I O R

N

1
1

]

Il
P

Uma infinidade de fragoes equivalentes a uma dada fragdo pode ser obtida, portanto, multiplicando
ou dividindo numerador e denominador por um mesmo fator. Por exemplo, multiplicando-os por 2, 3, 4,

e assim por diante, temos
3 6 9 12

4 8 12 16
Da mesma forma, divisdes sucessivas do numerador e denominador (isto é, simplificagoes das fragoes)
produzem uma sequéncia de fracdes equivalentes

32 24 16 8
T2 15 10 5
em que a ultima é irredutivel. Isto significa que 5 e 8 ndo tém divisores comuns além de 1. Portanto,
nao ha mais como dividir, com resto 0, tanto o numerador quanto o denominador por um mesmo niimero.
Lembremos, de nosso estudo anterior, que, neste caso, dizemos que 5 e 8 sdo primos entre si, ou seja,
MDC(5,8) = 1.

Todas as fragoes equivalentes a uma fracdo dada sdo equivalentes a uma fracio irredutivel. Esse
conjunto de fracbes equivalentes, com uma representante que é irredutivel, define uma mesma
quantidade ou mesmo ponto na reta numérica. Mais precisamente, define um niimero racional.
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Observagdo 1.2 Quando dividimos o numerador e o denominador da fragdo * pelo MDC(m,n),
obtemos a forma irredutivel da fracdo. Realmente, apos executar essa simplificacdo, ndo havera outro
fator comum maior que 1 pelo qual possamos dividir o numerador e o denominador, o que torna
impossivel uma outra simplificacdo.

Por exemplo, uma vez que MDC(15,24) = 3, ao dividirmos o numerador e denominador da fragao

?—g por 3, obtemos uma fracao irredutivel

24 24:3 8
5

15 15:3

Concluimos que cada ntimero racional positivo é representado por uma fragdo da forma

m

)

n

onde m e n sdo nimeros naturais, com n # 0. Esse mesmo nimero pode ser representado por todas as
fracOes equivalentes a esta. Por exemplo, todas as fracdes da forma

mxa

nxa’
onde a é um nimero natural, ndo-nulo, representam um mesmo nimero racional. Além disso, se b é um
divisor comum de m e n, as fracées da forma

m:b

n:b

também representam um mesmo niimero racional. Por exemplo, temos as equivaléncias das seguintes

fragoes:
6 12 18

3 J— —
2 4 8 12 7

Observacdo 1.3 As fragoes 7 e g sdo equivalentes e representam o mesmo numero racional se, e
somente se,

mp = gqn.

Aqui, m,n, p, q sdo nimeros naturais, com p # 0 e ¢ # 0. No exemplo acima, temos

pois
3x4 = 2x6 = 12.

Note também, por exemplo, que

Ne)

3 3 3x2 6

T 6:3 2 2x2 4’

9
6

(=}

donde verificamos, uma vez mais, que % = g. Outra forma de comprovarmos essa equivaléncia é pela
igualdade do “produto dos meios pelos extremos”:

9x4 = 6x6.

Até este ponto, definimos os niimeros racionais positivos como pontos na reta numérica que
corresponde a fragoes equivalentes a uma fragao da forma 7+, onde m e n sao nimeros naturais, com
n # 0. Dado um ntmero racional representado por 7%, seu oposto ou simétrico serd um nimero
representado por —*. Por exemplo, o oposto de %1 sera, _Tl. Em geral, nimeros opostos um ao outro

aparecem, na reta, em posigdes simétricas em relagdo a origem 0, como explicado no seguinte quadro:
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Denotamos o oposto de 7> por —7*. Note que

~+(-=)=0.

Observe, geometricamente, que o oposto do oposto de um nimero racional é o proprio nimero, isto é,

(-2

Y

-_m
n

o que justifica a “regra” de “menos com menos dé mais”, como vemos na escola.

Com isso, finalizamos nossa apresentacdo do conjunto Q dos ntimeros racionais, que serd formado
pelo niimeros racionais positivos, por seus opostos, que formam os ntimeros reais negativos, e pelo 0.
Temos

NcZcQ.

1.1.4 - Representacdo decimal dos nimeros racionais

Vamos retomar o exemplo da divisdo com restos 9 : 4. O algoritmo euclidiano da divisdo dos ntimeros
naturais assegura que temos quociente igual a 2 e resto igual a 1. No entanto, podemos “continuar” esse
algoritmo usando fragoes, isto é, usando niimeros racionais (ndo-inteiros). Executaremos o seguinte
procedimento, em que usaremos equivaléncia de fragoes:

9=4x2+41

10

10

=4x2+ %X(4X2 +2)

:4><2—|—

1 2
=4x2 + —x4x2 + —
S TV TV

1 2x10

B TR TS

1 1
=2t 12T 00

1 1
— Ax2 4 —xdx2 + ——x4x5,
EE T 10

x20

Na primeira igualdade, usamos o algoritmo da divisdo para nimeros naturais, obtendo resto igual a 1.
Na segunda igualdade, usamos o fato de que

10
— =1
10

Na terceira igualdade, usamos o algoritmo da divisdo para nimeros naturais, dividindo 10 por 4 e
obtendo
10 =4x242

Para a quinta e sexta igualdades, usamos a equivaléncia de fracoes

2 2x10 20 1

= = — = —x

10 10x10 100 100
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Por fim, na sétima igualdade, dividimos 20 : 4 obtendo
20 = 4x5.

Observamos que o divisor 4 é um fator comum a todos esses produtos e escrevemos:

1 1

Na expressao entre parénteses, temos fracdes decimais, isto é, fragdes cujos denominadores sdo poténcias
de dez como 10, 100, 1000, etc. Escrevemos o resultado da divisdo, agora completa, como

9 = 4x2,25,

ou seja

9
14 =— =225,
9 1 )

Note que o algarismo 2 depois da virgula é o algarismo que aparece multiplicado por % e o algarismo 5,
também depois da virgula, é o algarismo que aparece multiplicado por ﬁ, na expansao decimal em
(1.1).

Concluimos, com este exemplo, que a fracdo % (que expressa a divisdo 9 : 4) é representada pelo
nimero na forma decimal 2,25. Vejamos mais um exemplo dessa representacao de fragGes por

niumeros decimais. Considere a divisdo 9 : 8. Repetindo o procedimento acima, temos:

9=8x1+1
10
= 8x1 + 0
= 8x1+ %X(SXl +2)
1 2
= 8x1+ EX8X1 + ? .
—8X1+TX8 14+ — 10x10
— 8x1 + Ex8><1 + 1X10O><20
=8x1 + % 8x1 + %OX(SXQ +4)
—SX1+$X8X1+$ x8x 2—1—@10
—8X1+?X8 1—|—Wio X8X2 + ———— 100x10
—8X1+EX8 1—|—Fio x8x2 + 100><10X40
_8X1+_X8X1+m X 8% 2 1000><8><5.
Concluimos, colocando o fator comum 8 em evidéncia, que
1 1 1
9:8X<1+1 1—0+2 r'o+r 1000)
Logo, a expansao decimal completa de 9 : 8, ou seja, da fracao % é
S S IR VS =1,125. (1.2)
8 10 100 1000
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Outra forma, mais direta, de realizar essas contas de expansao decimal é encontrarmos fragoes
equivalentes as fracdes dadas, com denominadores dados por poténcias de dez como 10, 100, 1000,
dentre outras. Por exemplo, temos, multiplicando numerador e denominador de % por 25, a seguinte

equivaléncia de fragoes:
9 9x25 225

4 4x25 100
Esta fragdo da direita se escreve como 2,25, pois
225_200+ 20 i 5 _2+2X1 e 1
100 100 100 100 10 100’
como haviamos escrito na expansao, entre parénteses, em (1.1).
Da mesma forma, temos

9 9x125 1125

8 8x125 1000
Esta fragao da direita se escreve como 1,125, pois

1225—1000+ 200 N 20 N 5 —1-|—2><1+2>< 1 N 5 P
1000 1000 1000 1000 1000 10 100 1000 77

como haviamos escrito na expansao, no lado direito de (1.2).

Finalizando essa sequéncia de exemplos, vejamos o caso da divisdo 9 : 7 ou da fragao %. Neste caso,
deduziremos que néo é possivel encontrar uma fracdo equivalente cujo denominador seja uma poténcia
de dez. Vejamos:

g=;—i—%Z;—l—%:1+1i0><%X(7X2+6)=1+1i0><2+1—10><;X6
:1+1_10x2+ﬁlo><;x60:1+%XQ+1—:‘)OX%X(7X8+4)
- 1+%x2+ﬁlox8+ 10100x%x40:1+%x2+1(1)—0x8+ 1000x%x(7x5+5)
:1+ix2+ix8+LX5+ 1 x1><50:1+ix2+ix8+LX5+LXEX(7X7+1)
10°° " 100 ° " 1000 7 " 10000 " 7 10 ° " 100°° " 10007 " 10000 "7
=1+ 11_0X24r F})XSJF 10100%’4r 10(1)00”4r 1001000%”0
=1+ 352 % 100+ 7000 *° + 70000 + 700000 7 (TP
=1 11_0XZJr Floxﬂ 10100><5+ 10(1)00X7Jr 1001000Xl + 1000000%X30
=1+ 11_0X2Jr F})XSJF 10100X5Jr 10(}00X7Jr 1001000Xl * 100(}000X;X(7X41+ 2) )
=1 3072 1007 T 1000 ° * 10000 <" " 100000 ! T 10000004 T 1000000 < 7

Note que, apds varios passos no algoritmo da divisdo, voltamos a fracao %, mas multiplicada por m.
Portanto, teriamos que recomecgar, seguindo os mesmos passos, periodicamente. Logo, a expansio
decimal, nesse caso, é infinita e periédica. Temos:

9 1 1 1 1 1 1 1 9
T 10078t 5+ 70000 ™" * 100000 ! * 1000000 T 1000000 7

7 10 100 1000
— 1285714 + 0,000000285714 + . .

= 1,285714285714 . ..

Todo ntimero racional tem uma expansao decimal, finita ou infinita, com poténcias de dez, tanto
positivas quanto negativas. Portanto, um nimero racional pode ser representado tanto na forma de
fragdo quanto na forma de um nimero decimal.
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1.1.5 - NGmeros racionais e comensurabilidade

A expansio decimal dos niimeros racionais é fundamental para expressar medidas das mais diversas
grandezas em todos os contextos cotidianos, cientificos ou tecnoldgicos.

Os instrumentos e experimentos que permitem medir comprimento, drea, volume, massa, tempo,
velocidade e outras grandezas sao baseados em unidades de medida. Todas as medidas tém um nivel
de precisao e erro. Para escolher a unidade de medida, é preciso levar em conta a ordem de grandeza
do que esta sendo medido, além da finalidade da medicao e a disponibilidade dos instrumentos para
realiza-la.

Vejamos alguns exemplos que explicam esses pontos. Para medir a altura de uma pessoa ou outras
medidas corporais como a circunferéncia abdominal, usamos metros e centimetros: dizemos que uma
dada pessoa tem 1,74 metros, considerando que a unidade de medida seja em metros, com duas casas
decimais apés a virgula. Poderiamos também dizer que essa altura é igual a 174 centimetros. Nao
seria pratico, entretanto, dizer que a pessoa mede 0,00174 quilémetro. Da mesma forma, dizemos que a
distancia de Milagres a Barro é de 29 quiléometros em vez de 2900000 centimetros: a unidade de medida,
neste caso, é quilometro, que equivale a 1 000 metros ou a 100000 centimetros.

Em um extremo das ordens de grandeza muito elevadas, temos as distancias astronémicas.

Fotografia de Greg Rakozy em Unsplash. Disponivel em https:

//unsplash.com/photos/oMpAz-DN-9I7utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

Por exemplo, a distancia da Terra ao centro de nossa galaxia é estimada em
246 000 000 000 000 000 quilémetros,

enquanto que a distdncia do elétron ao niicleo em um dtomo de hidrogénio é dada pelo raio de Bohr,
aproximadamente igual a

0,000 000000 0529 metros.

Observacdo 1.4 Esse video, assim como outros disponiveis na internet mostra as diversas ordens de

grandeza usadas na Ciéncia, desde o microcosmo no interior dos niicleos atomicos as estruturas do
niver m Axi uasar ur negros:

Universo, como galdxias, quasares, buracos negros

https://youtu.be/8Are9dDbW24

Ordens de grandeza sdo expressas por poténcias de dez, tanto positivas quanto negativas. As poténcias
negativas de dez sdo notacoes para simbolizar fracdes da unidade em que o denominador é uma poténcia
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positiva de dez, como nos seguintes exemplos:

10_6:;:ixixixixixi

1000000 10 10 10 10 10 10
107° = 1 :ixixixixi

100000 10 10 10 10 10
10_4:;:ixixixi

10000 10 10 10 10
:I_(:)_?):LZLXLXi

1000 10 10 10
10—2:L:ixi

100 10 10
0= L

10

Recorde-se que as poténcias positivas de dez sdo dadas por produtos iterados do fator 10, como em:

10°=1
10' =10
102 = 10x10

10® = 10x10x10

10% = 10x10x10x10

10° = 10x10x10x10x10

10% = 10x10x10x10x10x10.

Com essas poténcias, podemos expressar a expansao decimal dos niimeros racionais de modo mais
sucinto. Por exemplo:

9 1125 1000 , 100 . 20 5

8 1000 1oooJr 1000+ 1000+ 1000

1 1 1
I 2 Bx——
15+ 2700 5 Tooo

=1+1x10"" +2x1072 + 5x1073
=1,125.

Distancias astronoémicas envolvem ordens de grandeza com poténcias positivas elevadas. Por exemplo, a
distdncia da Terra ao Sol, é estimada por

148 420 000 000 metros = 1,4842x10'" metros,

um nimero da ordem de grandeza de 10'' metros. No outro extremo, distincias atomicas sdo expressas
por poténcias de dez negativas. Por exemplo, o didmetro do nicleo do atomo de hidrogénio é dado por

1,7566x107° metro = 0,000 000 000 000 001 756 6 metro.

Medidas como essas tém algarismos significativos (certos e duvidosos) e erros, devidos a precisao dos
instrumentos ou de sua utilizagdo. Esses temas serdo retomados em outros cadernos, quando estudarmos
operacoes aritméticas com nimeros decimais a fundo.

Aprendemos com os antigos gregos que medir significa comparar a um padrao, considerado a
unidade de medida. Historicamente, as primeiras medidas de comprimento foram baseadas em partes
do corpo. Na arquitetura e na escultura da Grécia Classica, as propor¢oes da figura humana tinham
um papel predominante, como ilustrado nas obras do escultor Fidias e em templos como o famoso
Parthenon.
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Man vector created by freepik. Disponivel em https://www.freepik.com/vectors/man

Nessas obras, sdo respeitadas varias relagdes de proporcionalidade entre as medidas de suas partes,
como é o caso da presenca de razdes e retdngulos Aureos. Para mais detalhes sobre esses t6pi-
cos, recomendamos consultar textos como este, disponivel em https://www.vivadecora.com.br/pro/
curiosidades/proporcao-aurea/

Na area rural, especialmente no Nordeste, ainda usamos unidades de medida baseadas em partes
do corpo como a braga, que equivale a 2,2 metros e é aproximada pela envergadura, isto é, a extensao
méaxima obtida, de uma ponta a outra, abrindo-se os bracos totalmente na horizontal. Também derivadas
de medidas antigas, muitas das quais presentes na Biblia, temos o pé, o covado, o palmo e a jarda, para
citar alguns exemplos. No exercicio seguinte, consideramos como uma unidade a medida o comprimento
de um pé.

Problema 1 As alunas do nono ano se encontraram para jogar futebol em um campinho, onde nao tem
marcacao para o lugar das traves. Elas terdo que marcar, em cada lado do campo, um comprimento
de 5 metros para as traves de cada gol. As meninas ndo tém uma fita métrica ou trena, mas Sofia
lembrou que, como calga 33, seu pé tem um tamanho de 22 centimetros, aproximadamente. Como
Sofia pode, entao, ajudar a marcar as traves para que elas comecem o jogo?

Fa Solucdo. A distancia entre as marcas do gol, de cada lado do campo, deve ser de 5 metros ou
500 centimetros. Como o pé de Sofia tem, aproximadamente, 22 centimetros, podemos, na pratica,
aproximar a medida de seu pé para 20 centimetros (por falta) ou para 25 centimetros (por excesso),
visto que

20 < 22 < 25.

No primeiro caso, os 500 centimetros entre as marcas do gol é aproximada por

500
—— = 25 pé fi
50 5 pés de Sofia,

enquanto, no segundo caso, essa distdncia é aproximada por

500 ,
o5 = 20 pés de Sofia.

Vejamos as medidas reais, nos dois casos, nas seguintes figuras:

Figura 1.8: Medida do gol, usando a estimativa de 25 centimetros para o pé de Sofia
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Repare que, na primeira estimativa, Sofia marcou 25 pés, ou seja, um comprimento de 25x22 = 550
centimetros, superior aos 500 centimetros desejados. Logo, uma estimativa por baixo do tamanho do seu
pé resultou em uma aproximagdo por cima do tamanho da trave, com erro de 50 centimetros na medida.

Na segunda estratégia, Sofia marcou 20 pés, ou seja, um comprimento de 20x22 = 440 centimetros,
inferior aos 500 centimetros desejados. Logo, uma estimativa por cima do tamanho do seu pé resultou
em uma aproximacao por cima do tamanho da trave, com erro de 60 centimetros na medida. Note que
o erro foi ainda maior, pelo fato de que 20 centimetros é uma aproximacao melhor de 22 centimetros do
que 25 centimetros!

Para corrigir essas imprecisoes na medida, Marilia, colega de Sofia, observou que

22x22 = 484,
com apenas 500 — 484 = 16 centimetros de erro na medida. Melhor ainda,
22x23 = 506,

com erro ainda menor, de 6 centimetros na medida da trave.

Figura 1.10: Medida do gol, usando a aproximacao de 23 pés de Sofia

Assim, Sofia mediu, pé ante pé, uma medida equivalente a 23 pés, ou seja, 506 centimetros,
aproximadamente. |

Exercicio 1.1 Como ficariam essas medidas das traves, considerando o tamanho dos pés de outras
alunas do nono ano, conforme a tabela, com o padrao dos calgados brasileiros?

Aluna Calcado Tamanho
Aninha 34 22,6 cm
Isabel 35 23,3 cm

Observacdo 1.5 Se vocé ja jogou futebol de rua, deve ter passado por situagées como a do exercicio.
A ligdo que extraimos é de que é preciso fixar uma unidade de medida, seja o pé de Sofia ou o pé de
Aninha, e comparar a grandeza que queremos medir com a unidade fixada: é claramente importante
que “o mesmo pé” seja utilizado para medir ambos os gols. Ninguém vai querer que uma trave tenha
o comprimento de 20 pés de um jogador adulto e o outro tenha 20 pés de um menino de trés anos de
idade.

Na situagao descrita no exercicio, se as alunas possuissem uma régua ou fita métrica (trena),
a medicdo seria mais precisa, diminuindo a margem de erro. Além disso, a vantagem é que o
comprimento de um metro em qualquer trena de boa qualidade é (praticamente) o mesmo. Outra
vantagem é que a fita métrica garante que a medida seja feita em linha reta. Enfim, para jogar
futebol em um campinho, o importante mesmo ¢é a bola e podemos, tranquilamente, dispensar a trena.
Mas, o mesmo nao pode ser dito se formos construir uma casa, quando a precisdo do instrumento de
medicao e das medidas torna-se crucial.

A base das medidas de grandezas geométricas é a escolha de uma unidade de medida de comprimento
de segmentos de retas, a partir da qual determinamos, por comparacao, medidas de outros segmentos.
Também a partir das medidas de comprimento, podemos definir medidas de area e volume, além de
medidas de grandezas relativas, que envolvam razées entre grandezas, como densidade, vazao, fluxo,
velocidade, dentre outras.
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Exercicio 1.2 As engenheiras Andrea e Mdrcia usaram uma fita métrica para medir as dimensoes de
um terreno em que fardo uma quadra de futebol society, com 25 metros de largura e 45 metros de
comprimento. Elas consideram, por segurancga, um erro de 5 centimetros nas medidas de largura e
comprimento que fizeram no terreno. Isso significaria um erro de quantos metros quadrados na area
da quadra?

Solucdo. Se considerarmos a margem de erro nas medidas, a medida h da largura da quadra esta
no intervalo de 25 metros menos 5 centimetros a 25 metros mais 5 centimetros, ou seja,

25 —-0,05 < h < 254 0,05,

ao passo que a medida b do comprimento da quadra esta no intervalo de 45 metros menos 5 centimetros
a 45 metros mais 5 centimetros, ou seja,

45 — 0,05 < h < 45 + 0,05.
Logo, a medida bxh da area, em metros quadrados, estd no intervalo de

(25 4 0,05)x (45 =+ 0,05) = 25x45 % 0,05% (25 + 45) + (0,05)>
= 1125 + 3,5 + 0,0025.

Observe que o primeiro termo seria a drea exata, no caso em que as medidas lineares nao tivessem erro
algum; o segundo termo é a parte significativa do erro, que é proporcional ao perimetro do terreno; e
a terceira parcela é um componente quadratico do erro que nao consideraremos por ser muito pequena
em comparacao com as demais medidas.

Concluimos que o erro é da ordem de 3,5 metros quadrados em um total de 1125+ 3,5 =1128,5
metros quadrados, ou seja, algo como 0,3% de erro na medicao da area. |

Em resumo, para efetuarmos medidas de uma dada grandeza, comecamos definindo uma unidade
de medida, seja baseada na tradigao histérica ou no cotidiano (como pés, bragas, arrobas, etc.), seja
em conceitos cientificos muito precisos e universais, como no caso do metro, do segundo e do bit. O
propésito do sistema de unidades de medida é de que as medidas possam ser comunicadas sem
ambiguidade, de modo universal, e possam ser verificadas e reproduzidas, segundo experimentos
idénticos. Esse rigor é fundamental na atividade cientifica. Imagine, por exemplo, como os médicos
prescreveriam uma dose de antibidtico ou de vacina sem os miligramas e milimetros.

No caso de comprimentos ou distdncias, precisamos definir um segmento de reta padrao, com o
qual todos serdo comparados. Os gregos acreditavam que dois segmentos quaisquer sio comensuraveis,
ou seja, que a razdo entre suas medidas é um ntimero racional da forma *. Isso significa que n copias
de um dos segmentos teria comprimento igual a m cépias do outro. Por exemplo, nas figuras seguintes,
o segmento com medida ¢ equivale a % do segmento de medida u, ou seja, 4 cdpias do segmento de
medida ¢ tém o mesmo comprimento de 5 cépias do segmento de medida u:

0 17 27 3/ 4/

Figura 1.11: 4 segmentos de medida £

Figura 1.12: 5 segmentos de medida u

Observacao 1.6 Essa concepcao dos gregos, sobre a comensurabilidade de todas as medidas, ou
seja, a suposicao de que a razdo ou comparacio das medidas de dois segmentos quaisquer é sempre
dada por um numero racional, reflete a seguinte premissa filosofica:

“o homem € a medida de todas as coisas.”
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Embora essa ideia tenha um forte apelo filos6fico e uma profunda beleza matematica, nao é verdadeira!
A descoberta de que hé dois segmentos ndo-comensuraveis ocorreu na prépria Grécia Classica, no seio
da Escola Pitagérica, cujos asseclas professavam a crenga na comensurabilidade de todas as medidas!

Antes de discutirmos esse ponto mais detalhadamente, realizemos um experimento pratico, inspirado
no artigo “A matemaética da folha de papel A4”, da autoria de José Luiz Pastore Mello, disponivel em
https://www.rpm.org.br/cdrpm/66/11.html

Exercicio 1.3 Tente fazer medidas bem precisas dos lados de uma folha de papel A4, o formato
comum das folhas de papel oficio ou, provavelmente, de um caderno desses de 10 matérias ou mais.
Use uma régua ou fita métrica para isso e faca as seguintes medicoes:

1) altura da folha, isto é, medida do lado de menor comprimento;
2) largura da folha, isto é, medida do lado de maior comprimento;
3) a razdo entre a altura e a largura da folha;

4) érea da folha;

5) medida da diagonal da folha.

Observacdo 1.7 A figura seguinte representa uma folha de papel A4, cujas medidas tém a seguinte
propriedade: ao dividirmos a folha ao meio, na diregao de sua largura ¢ (maior dimensdo), a largura
de cada metade, isto é, £/2, é igual a altura v (menor dimensao) da folha original

f Y4 i

¢ wu

u 42’
ou seja,

% = 2u.

Assim, concluimos que

0 = 2.

No exemplo, acima, da folha de papel A4 a altura e a largura sdo medidas de segmentos nao-
comensuraveis: se colocarmos varias e varias folhas lado a lado, alinhadas por suas larguras, jamais
obteremos o mesmo comprimento que varias folhas, alinhadas lado a lado, alinhadas segundo duas
alturas.

I

<

O “problema”, aqui, é que a raiz quadrada de 2 ndo é um ntmero racional, como discutiremos na
secao 1.2.4 a seguir.
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@ 1.2- Os nimeros reais e a reta numérica

Na secao 1.1.5 anterior, mencionamos que, mesmo fixada uma unidade de medida de comprimento,
nem todos os segmentos de reta terdo medida comensuravel ou comparavel com a unidade fixada.
Isso quer dizer que, seja qual for a medida u de comprimento fixada como unidade de medida, ha
segmentos tais que a razdo entre sua medida ¢ e a medida u ndo é um namero racional.

Nesta secao, mostraremos alguns exemplos de pares de segmentos, em figuras geométricas, que nao
sdo comensuraveis. Ou seja, mostraremos alguns exemplos de medidas que nao sdo dadas por niimeros
racionais. Na proxima subsecao, discutimos a relagdo entre medidas comensuraveis e nimeros racionais.
Na seguinte, mostramos alguns exemplos de medidas que nao sdo dadas por niimeros racionais, quando
comparadas com uma dada unidade de medida.

1.2.1 - NGmeros reais e medidas de segmentos

Nossa principal hipotese é a seguinte:

Fixada uma unidade de medida de comprimento (ou distdncia), todo segmento de reta possui uma
medida, que serd expressa por um numero real positivo.

Veremos que nem todos os segmentos tém medidas dadas por niimeros racionais. A hipdtese acima
diz que os numeros reais formam um conjunto numérico completo, em que podemos expressar as
medidas de todos os segmentos de reta, uma vez fixada uma unidade de medida.

A partir dessa hipétese, é possivel estabelecer uma correspondéncia entre os nimeros reais (agora
incluindo positivos e negativos) e os pontos de uma reta em que cada nimero corresponde a um tnico
ponto, e vice-versa, como segue: em uma reta desenhada horizontalmente, escolha dois pontos distintos
O e P, com P a direita de O (ver Figura 1.13). Identifique o ponto O com o ntimero 0 e o ponto P como
numero 1 e defina o segmento OP como a unidade de comprimento. Isso estabelece uma orientagéo e

R o) P Q
) 0 1 ¢ R

Figura 1.13: A reta numérica, fixada uma unidade de medida e uma orientagao

uma escala (ou unidade de medida) para a reta. Cada ponto da reta, a direita de O, como é o caso do
ponto @), estd associado a um nimero real positivo: este niimero real £ é a medida do segmento de
reta OQ) cujos extremos sao O e Q.

De modo similar, cada ponto da reta, & esquerda de O, esta associado a um numero real negativo:
na figura este é o caso do ponto R, associado ao nimero real negativo —¢. Note que o segmento OR, de
O a R, tem a mesma medida do segmento de OQ), mas as orientagoes dos dois segmentos sao diferentes:
OR estd orientado para a esquerda e OQ para a direita. Por essa razao, usamos os nimeros reais —¢ e
£, respectivamente, para fazer essa distingao.

Dada essa correspondéncia entre cada ponto da reta e a medida (orientada) do segmento determi-
nado pela origem O e por este ponto, passamos a denominda-la de reta numérica ou reta real. A
reta numérica é uma representacdo geométrica do conjunto dos ntimeros reais R.

O conjunto dos ntimeros reais contém o conjunto dos nimeros racionais que, por sua vez, contém o
conjunto dos nimeros inteiros, no qual esta contido o conjunto dos ntimeros naturais, Temos:

NCZCQCR

R

racionais Qf irracionais R — Q
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1.2.2 - Medidas expressas por nimeros inteiros

Recapitulando nosso estudo da correspondéncia entre medidas de segmentos de reta e ntimeros,
comecgamos com o caso mais basico em que essas medidas sdo expressas por numeros inteiros. Em
seguida, passamos para o caso em que as medidas podem ser expressas por nimeros racionais nao
inteiros e, por fim, discutir medidas dadas por niimeros reais que ndo sdo nimeros irracionais.

Sejam £ a medida de um dado segmento e u a medida de um segmento que tem mesmo comprimento
que o segmento OP na reta numérica. Ou seja, u tem o comprimento da unidade de medida. Se £ é
dado por um niimero inteiro positivo m, entao

{ = mu,

ou seja, pondo m copias do segmento u lado a lado, sem sobreposi¢ao, temos um segmento com
comprimento exatamente igual a £, como na figura seguinte:

Figura 1.14: uma barra £ que mede 4 unidades de comprimento, ja que sobre ¢ cabem exatamente 4
copias de u.

Sendo assim, dizemos que ¢ mede m unidades de comprimento, ou seja, £ = mu. De outro modo,
dizemos que a razdo entre £ e u € igual a m. Na Figura 1.14 temos um exemplo em que m = 4, ou seja,

{ = 4u.

i
5

[ S A
A R S S R

Figura 1.15: uma maneira pratica e precisa de marcar niimeros inteiros na reta real
é utilizar um compasso. Fixe a abertura do compasso tomando por base o segmento
OP; em seguida, use 0 compasso para marcar os pontos um a um, partindo de O
em ambos os sentidos.

ceQ

Partindo da origem O da reta numérica, podemos marcar os pontos que correspondem a nimeros
inteiros, marcando segmentos de comprimento 1 para a direita ou esquerda, como demonstado na figura
acima.

Exercicio 1.4 — SPAECE-2015. Observe a reta numérica da figura abaixo, a qual estd dividida em
segmentos de mesmas medidas. Os nimeros representados pelos pontos P, @) e S sdo, respectivamente:

(a) —11, —3 e 6.

(b) —11, 5 ¢ 6
(¢) =10, -3 e 5
(d) —10, -8 e 5
P Q S

% Solucdo. O ndmero —5 estd na quinta marca a esquerda do 0 e o niimero 10 na décima marca a
direita do 0. Assim cada segmento entre duas marcas consecutivas tem medida 1. Como P e @ estao

= i
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situados na décima e oitava marcas a esquerda de 0 e S estd na quinta marca a direita, os nimeros que
os representam sdo —10, —8 e 5, respectivamente. Portanto, a resposta é (d). |

Exercicio 1.5 — Prova Brasil - adaptado. Uma professora da 4? série pediu a uma aluna que marcasse
numa linha do tempo o ano de 1940. Admitindo que o segmento dado na Figura 1.16 esta dividido
em partes iguais e que cada segmento representa um mesmo intervalo de tempo, assinale a alternativa
que corresponde ao ponto que a aluna deve marcar para acertar a tarefa pedida.

a

—~
=3

@@\/v
o QW

[ |
1900 B A C D 2000

Figura 1.16: linha do tempo ao longo do século XX.

Solucdo. Admitamos que o segmento dado na Figura 1.16 estd dividido em partes iguais (o que
nao foi dito explicitamente na questao) e que cada segmento representa um mesmo intervalo de tempo
(o que também nao foi dito no enunciado). Contando o nimero de partes, vemos que os 100 anos
correspondentes ao intervalo entre 1900 e 2000 foram divididos em 10 partes iguais, ou seja, 10 décadas.
Dessa forma, o ponto que corresponde ao ano de 1940 deve estar na quarta marca depois de 1900, isto é,
deve ser o ponto A. |

1.2.3 - Medidas expressas por nimeros raciondis

Pode ocorrer que, ao tentar expressar a medida £ de um segmento, comparando-a com a unidade de
medida, que é o comprimento u do segmento OP, observamos que ¢ nao equivale, exatamente, a um
multiplo inteiro (positivo) de u, ou seja, pode acontecer que

{ # mu,

seja qual for o niimero inteiro positivo m. Pode ser necessario completar a medida com fragdes de u ou,
de outro modo, pode ser preciso retirar-se uma fracdo da medida de u, para obtermos, precisamente, £.

No caso mostrado na Figura 1.17 a seguir, a dltima cépia da unidade u nao se ajusta exatamente ao
segmento de comprimento ¢. Para contornar essa dificuldade, dividimos o comprimento u da unidade
de medida em partes iguais, obtendo sub-multiplos da unidade de medida: na figura, consideramos
%u como esse sub-multiplo, definindo uma nova unidade de medida. Agora, contamos quantas dessas

sub-unidades serao necessarias para obtermos, exatamente, o comprimento £:

Figura 1.17: uma barra ¢ que mede 19/5 unidades de comprimento u.

No exemplo da Figura 1.17 acima, 3 segmentos de comprimento u tém, juntos lado a lado, comprimento
menor que £: 3u seria uma aproximacao por falta da medida de ¢. Por outro lado, 4 segmentos de
comprimento u tém, juntos lado a lado, comprimento maior que ¢: 3u seria uma aproximagao por
excesso da medida de £. Logo,

3u < £ < 4u.
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Para obtermos uma medida exata, procedemos como dito anteriormente: dividimos cada segmento de
comprimento u em 5 segmentos de mesmo comprimento, de modo que cada um desses novos segmentos
tem comprimento igual a %u Observamos que, agora, alinhando, lado a lado,

5+5+5+4=19

desses segmentos de comprimento %u, obtemos um segmento de comprimento exatamente igual a ¢, ou.

seja,

19

Observe que

4
€:3u+5u,

o que concorda com o fato de que

19 4
—=3+-=3+08=38
5 +5 +a 1

numero racional ndo-inteiro entre 3 e 4.

Observacdo 1.8 A comparagao entre ¢ e u, dada por

1
{= —gu,
5
significa que
5¢ = 19u,

ou seja, b copias do segmento £ tém exatamente o mesmo comprimento de 19 cépias do segmento u.
Pensando de outra forma, a comensurabilidade ou comparabilidade dos segmentos de medidas
{ e u significa que podemos encontrar um segmento cuja medida p é tal que

u=5p e £=19p

Note que, na figura acima, cada um dos segmentos menores tem medida igual a p = %u
Observacdo 1.9 No caso que discutimos na se¢do 1.1.5, tinhamos
5
= -u.
i
Neste caso, vimos que
40 = bu,
como demonstram as seguintes figuras:
(l) Ll Ll Ll Ll 1|/€ I I I I 2|£ Ll Ll Ll Ll 3|£ I I I I 4|€
Figura 1.18: 4 segmentos de medida ¢
(l) T T T T 1|u U U U U 2|u T T T T 3|u U U U U 4|u T T T T 5|u

Figura 1.19: 5 segmentos de medida u

Com esse entendimento, fixada a unidade de medida u, que é o comprimento do segmento OP,
podemos marcar, sobre a reta numérica, qualquer ponto @) tal que o comprimento ¢ de OQ seja um
multiplo racional de u, isto é, tal que

(= —u,
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onde m, n sdo nimeros naturais, com n # 0. Essa relagdo de comensurabilidade ou comparabilidade
significa que
nf=mu,

ou seja, que n copias de O tém mesmo comprimento que m cépias de OP. Por exemplo, para marcar
o ponto ) cuja distancia (positiva) a O é igual a %, podemos dividir o segmento unitario OP em 4
partes iguais e depois tomar, lado a lado, 9 dessas partes, movendo-se para a direita a partir de O (pois
% é positivo), conforme a seguine figura:

0 P Q
12 3 5 6 7 9
4 4 4 4 4 4 4
0 4 8
4 4

Figura 1.20: o ponto @ sobre a reta numérica, cuja distancia a O é igual a %

4 -1 8=292¢ % = % Partindo de O, para chegar ao ponto @, nos deslocamos 2

Observe que ; 2 ' 2
unidades para a direita, ou seja, 2 unidades, seguidas de 7, sempre para a direita. Isso demonstra,

: 9 _ 1
geometricamente, que 7 =2+ 7.

(0] P

= —
o —
Sl —
o~y —
o —e

N — ——
N —

@)
—
[\)
w

Exercicio 1.6 Marque, sobre a reta numérica, todos os niimeros da forma %, onde m é um inteiro
que satisfaz —6 < m < 6.

Solucdo. Devemos dividir o segmento unitdrio em duas partes iguais (ou seja, ao meio), a fim
de marcar o ntimero % sobre a reta. Em seguida, marcamos os multiplos positivos e negativos desta
subunidade, para a direita e para a esquerda da origem, respectivamente, como na Figura 1.21. Como
—6 < m < 6, temos 6 multiplos de 1/2 para cada lado. Em tal figura, quando o resultado da divisao
m/2 é um inteiro, resolvemos por anotar apenas o resultado dessa divisdo (por exemplo, escrevemos 1
no lugar de %, escrevemos 2 no lugar de %, etc), e usamos “marcas” maiores para os numeros inteiros

(isso ndo é obrigatério, mas facilita bastante a leitura e interpretagdo da figura). |
(@) P
| | | I | I | -
_5 _3 _1 1 3 5
-3 © 2 © 0 ’ 1 ’ 2 ’ 3

Figura 1.21: a reta nimerica, marcada com alguns niimeros da forma %, onde m € Z.
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1.2.4 - Algumas medidas expressas por nimeros irracionais *

Consideremos os seguintes problemas geométricos:
Problema 2 Determine o comprimento da diagonal de um quadrado cujo lado mede 1 unidade de

comprimento.

i Solucdo. A figura seguinte representa um quadrado cujo lado mede 1 unidade de comprimento,
destacando-se sua diagonal:

AN

I\
N\

—1—

Nessa figura, a diagonal do quadrado é a hipotenusa de um triangulo retdngulo cujos catetos sdo dois dos
lados do quadrado, ambos com medida igual a 1 unidade de comprimento. Pelo Teorema de Pitdgoras,
o quadrado da medida da hipotenusa, ¢2, é a soma dos quadrados das medidas dos catetos, isto é,

C=1+1%

Assim,
=2,

Logo,

0 =2.

Lembre-se que v/2, a raiz quadrada de 2, é o ntimero real cujo quadrado é igual a 2, isto é,
V2xy/2 = 2.

Concluimos que o comprimento da diagonal do quadrado é igual a v/2 unidades de comprimento. M

Problema 3 Determine o comprimento da diagonal de um pentagono regular cujo lado mede 1 unidade
de comprimento.

Matematicas Visuales. Disponivel em

http://wuw.matematicasvisuales.com/english/html/geometry/goldenratio/pentagondiagonal.html

T Solucdo. A figura indica tridngulos semelhantes: usando as relagdes de semelhanga entre lados
correspondentes nos tridngulos, temos

6—1 _1
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Assim, multiplicando cada um dos lados por ¢, temos:

P(p—1) =1
Logo,
¢*—¢—1=0.
Para resolver essa equagao quadratica, completamos quadrados, obtemos:
¢?—$%¢+i—%—1:&
Assim,

Como ¢ é positivo, concluimos que

Observacdo 1.10 Na pagina seguinte, vocé pode encontrar uma “demonstragdo sem palavas” da
relagdo de proporcionalidade entre o lado e a diagonal do pentagono regular:

http://www.matematicasvisuales.com/english/html/geometry/goldenratio/pentagondiagonal .html
O ntimero /5, que aparece no Problema 3, significa um ntimero cujo quadrado é igual a 5, isto é, tal

que
V5xv/5 = 5.

Esse ntiimero é o comprimento da hipotenusa de um triangulo retdngulo de catetos de comprimentos
iguais a 1 e 2, como ilustrado na seguinte figura:

Nl
[N S

11— f 2 i

Problema 4 Determine a sec¢io ou razao aurea de um segmento: devemos dividir um segmento
em duas partes, com comprimentos a e b, com a > b > 0, tais que

a mator parte estd para a menor, assim como a soma das partes estd para a maior,
ou seja,

a a+b
b a

Fa Solucdo. Multiplicamos ambos os lados da relagdo de proporcionalidade

a a-+ b
b a
por %, temos
2
a a
—=-+1
b2 b
Denotando ¢ = 7, temos a equagao quadratica
¢ —¢—1=0,
K I.!-" (Fd ::I_::'_l‘}:!'.-' I_“L" PACTEL
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cuja solugdo é a razdo durea

1 V5

que ja apareceu no Problema 3 anterior. Concluimos que a razio entre as partes a e b é dada pela razao
aurea

_|_

“l%

DO | =

a
b

|
Observacdo 1.11 A razdo aurea aparece em varios contextos em Matematica, como associada a

sequéncias de Fibonacci e & espiral aritmética de Arquimedes. Em Arquitetura, estd na base da
definicao do retangulo dureo, cujos lados sdo a + b e a, na proporgao aurea, conforme a seguinte figura:

Gold vector created by macrovector-official. Disponivel em

https://www.freepik.com/free-vector/golden-ratio_4559751.htm

Problema 5 Determine o comprimento da circunferéncia de um circulo cujo raio mede 1 unidade de
comprimento.

% Solucdo. A solugdo deste problema sera discutida detalhadamente nos cadernos sobre Geometria.
Por ora, lembramos que a razdo entre a circunferéncia C' e o didmetro d do circulo é dada por

No caso particular em que o raio mede 1 unidade de comprimento e, portanto, o didmetro d é dado por
duas unidades de comprimento, temos C' = 2w. Na figura acima, vé-se um segmento de reta abaixo do
circulo, que corresponde a “desenvolver” a circunferéncia rolando-a sem deslizar. |

Os niimeros reais positivos v/2, v/5 e 7 sdo exemplos de niimeros irracionais.

Observacdo 1.12 Vamos demonstrar que v/2 ndo é wm nimero racional, usando o método chamado
de reducio ao absurdo: comecamos supondo que v/2 é um nimero racional e chegaremos, por deducoes
logicas, a uma concluséo falsa.

Suponhamos, pois, que /2 é um nimero racional. Nesse caso, v/2 pode ser representado por uma

. Bt 27
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fragao irredutivel, ou seja, existem niimeros naturais m e n, com n # 0, tais que
m
VvV2=—.
n
Além disso, m e n ndo possuem divisores comuns. Sendo assim, temos:
m=+2n
e, elevando cada um dos lados ao quadrado, obtemos:
m? = 2n.
Logo, 2 é fator de m?, ou seja, m? é um nimero par. Portanto, m deve ser par, pois, se m fosse
impar, m? seria impar (verifique!). No entanto, como m é par, m? ¢ divisivel por 4 = 2x2. Logo, 2
deve ser fator de n?. Concluimos, como antes, que n é um nimero par.

Deduzimos, por esses passos légicos, que m e n sao nimeros pares, ou seja, que esses Nimeros
tém 2 como um fator comum. Isso contradiz o fato de que m e n s@o nimeros sem fatores comuns

Exercicio 1.7 Use a ideia acima para mostrar que /5 é um ntmero irracional, ou seja, um ntmero
real nio-racional. (Sugestdo: supondo, por reducdo ao absurdo, que v/5 = m/n, com m e n naturais
e n # 0, considere as possibilidades de m ou n serem ou nao multiplos de 5.)

Exercicio 1.8 De modo geral, é possivel mostrar que, para qualquer niimero natural primo p, o
nimero /p é irracional. Demonstre essa afirmacao.

Solucdo. Por reducao ao absurdo, suponha que, dado um niimero natural primo, sua raiz quadrada
/P seja um niimero racional, representado por uma fracao irredutivel:

m
\/Z_) =

n
onde m e n sdo nimeros naturais, com n # 0, de modo que m e n nao tem fatores comuns (além de 1,
claro). Assim,

m = ./pn
e, elevando ambos os lados ao quadrado, temos:

m? = pn?.
Logo, p é um fator primo de m?. Como p é primo, deve ser fator de m. Logo, m? é divisivel por p?.
Assim, n? é divisivel por p. Uma vez mais, como p é primo, segue que n deve ter p como fator. Logo, m
e n deveriam ter p como fator comum, o que contradiz o fato de m e n nao terem fatores comuns. M

Observacdo 1.13 A demonstragdo de que m é um nimero irracional é mais complexa e envolve
métodos que ndo sao estudados na Matematica Bésica. Recomendamos os seguintes materiais sobre
a histéria do 7w e a demonstracio de sua irracionalidade:

e https://www.youtube.com/watch?v=wCFj4_gDIU4
https://www.youtube.com/watch?v=gMlf1ELvRzc
http://www.ime.unicamp.br/~apmat/numero-pi/
https://youtu.be/vY6965UdcLI

O livro de Eli Maor, Trigonometric delights.

A discussao dos exemplos acima parece sugerir que nimeros irracionais, ou seja, nimeros reais nao-
racionais, sdo casos especiais, ou mesmo raros, e estdo relacionados a contextos geométricos excepcionais.
A verdade, também surpreendente, é de que, ndo bastasse existirem niimeros irracionais, eles sdo muito
mais frequentes que os niimeros racionais na reta numérica! Ou seja, a irracionalidade de um nimero
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real, longe de ser a “excegdo”, é quase uma “regra”. Vamos tornar essas afirmac¢des um pouco mais
precisas quando discutirmos a expansao decimal dos niimeros reais, sejam racionais ou irracionais.

Por ora, observe que existem infinitos niimeros irracionais: de fato, como existem infinitos niimeros
primos (o matematico Euclides provou este teorema), existem infinitos nimeros da forma ,/p, onde p é
um nimero primo. Logo, o exercicio 1.8 implica que os infinitos nimeros da forma ,/p, onde p é primo,
sdo todos nimeros irracionais. Para ampliarmos nossa lista de exemplos, facamos duas observagoes:

Observacdo 1.14 As operagoes de adicao e multiplicagdo sdo fechadas nos niimeros racionais Q, ou

seja, dados niimeros racionais
m p
r=— e y=-=,
n q

onde m, n,p,q sdo numeros naturais, com n # 0,q # 0, a soma

m mqg—+n
noq ng
e o produto
m p _mp
n q nq

sao também niimeros racionais. De modo sucinto,

se €Q e yeQ, entdio z+ycQ e z-yeQ.

Observacdo 1.15 Recorde-se que o oposto ou simétrico de um ntimero racional

= —,
n

onde m, n, sdo nimeros naturais, com n # 0 é o nimero racional dado por

—m
—_—r = —-
n
Sendo assim, temos

z+ (—z)=0.
A diferenca y — = entre dois niimeros racionais x e y é definida como a soma de y com o oposto de z,
isto é,
y—z=y+(-x).

Finalmente, se 2 # 0 (ou seja, se m # 0), o inverso de z é o nimero racional

Observe que

O quociente de y :  ou £ de dois niimeros racionais, com x # 0, é definido como o produto de y pelo
inverso de x, isto é,

Y 1
T T

Estudaremos essas opreracoes aritméticas com mais detalhes nos cadernos seguintes.

Voltando a discussao sobre a infinidade dos niimeros irracionais, observamos, inicialmente, que,
dado um ntimero primo p e um ntimero racional x = 7 # 0, o produto

&% i " .,_'."-f“";_:_. jlw —
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é também irracional. Se o produto y fosse um ntimero racional (ndo-nulo) da forma %, teriamos

ou seja, /p seria um numero racional, o que é uma contradigao com o fato de que ,/p é um ntimero
irracional. Logo, nossa premissa é falsa, ou seja, concluimos que os nimeros da forma

/D,

onde z € Q e p é um ntimero primo, sdo nimeros irracionais. De modo similar, demonstramos que sao
irracionais todos os niimeros da forma

X + z+/p,

onde X,z sdo numeros racionais e p é um numero primo. Logo, existe uma infinidade de ntimeros
irracionais na reta numérica R.

Deduzimos, desse modo, que o conjunto dos niimeros irracionais em R ¢é infinito. De fato, provamos
algo mais: que ha, pelo menos, tantos niimeros irracionais quanto nimeros racionais. Ou seja, podemos
colocar pelo menos um sub-conjunto dos niimeros irracionais em correspondéncia biunivoca com
pares de niimeros racionais da seguinte forma:

(X,z) € QxQ — X + z/p.

Porém, outro fato desconcertante é de que a “quantidade” de nimeros irracionais em R é “muito
maior” do que a “quantidade” de niimeros racionais. Usamos aspas nessas expressoes porque, de fato,
tanto o conjunto dos ntimeros racionais quanto o conjunto dos niimeros irracionais tém infinitos
elementos. No entanto, o mateméatico Georg Cantor, no século XIX, descobriu uma maneira muito
engenhosa de atribuir diferentes quantidades (cardinalidades seria a expressdo correta) a conjuntos
com infinitos elementos: ha mais de um tipo de quantidade ou cardinalidade infinita, ou seja, ha mais
de um tipo de “infinito”.

Por exemplo, a quantidade infinita de nimeros naturais, no conjunto N, é chamada da enumerdvel:
na verdade, essa é a propria definigdo dos niimeros naturais, que sdo usados para contar. Embora nao
pareca, os nimeros racionais, no conjunto Q, podem ser colocados em correspondéncia biunivoca
com os nimeros naturais: em outras palavras, podemos contar os niimeros racionais, associando a
cada nimero em Q um nimero natural. Formas de fazer isso estdo descritas neste video, por exemplo:

https://www.youtube.com/watch?v=fPWoKCGIJ4s

Com os nimeros reais, a situacao é radicalmente diferente: ndo é possivel contar os nimeros reais, ou
seja, coloca-los em correspondéncia biunivoca com os niimeros naturais: para que fosse possivel
conta-los, precisarfamos “separa-los” um a um e, para cada nimero real, associar um nimero natural.
Cantor demonstrou, com seu processo de diagonalizagdo, que essa contagem é impossivel, ou seja, que
0s numeros reais nao sdo enumeraveis. Veja, a este proposito, os videos

e https://youtu.be/_aXwKJIk8oBw
e https://youtu.be/WQWkGIcQBNQ
e https://youtu.be/fPWoKCGIJ4s

Como Q é enumeravel e R é ndo-enumeravel, temos, aqui, dois exemplos de diferentes infinitos: o
infinito enumeravel dos nimeros racionais é um exemplo de um conjunto infinito discreto, em que
seus elementos podem ser “separados” uns dos outros. Ja o infinito ndo-enumeravel dos niimeros reais
corresponde ao modelo continuo da reta numérica, em que os pontos nao podem ser “separados” ou
‘isolados” uns dos outros.

Deduzimos, em particular, que ha infinitos nimeros irracionais em uma quantidade que nao pode
ser contada, isto é, o conjunto dos numeros irracionais em R nao é enumerdvel, diferentemente,
portanto, do conjunto dos niimeros racionais.
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Para uma biografia de Georg Cantor, recomendamos comegar por este link: https://www.youtube.
com/watch?v=0J6GiWoKeMk

Observacdo 1.16 Essas questoes sao profundamente filoséficas e estdo nos fundamentos logicos da
Matemética. Mas, ao mesmo tempo, sao de crucial importancia nos desenvolvimentos cientificos e
tecnolégicos, por exemplo, que levaram a era da Computacéo!

Além disso, veremos, nas proximas se¢oes, como esses problemas estao relacionados a expansao
decimal dos ntimeros reais, essencial para a notacao cientifica usada em todos as areas do conhecimento,
especialmente nas Ciéncias e Tecnologia.

1.3 - NUmeros reais e suas representacoes decimais

Na secdo 1.1.4, trabalhamos a expansao decimal de nimeros racionais: um ntmero racional é
representado por uma sequéncia de fracdes equivalentes umas as outras, como em

9 18 27
8 16 24 7

Cada uma dessas fragbes, por sua vez, pode ser expandida em poténcias de dez, tanto negativas quanto
positivas, na forma de um niimero decimal. Por exemplo, vimos que

2—1+1><i+2><i+"x 1
8 10 100 771000

=1,125.

Podemos representar essa expansao decimal, geometricamente, na reta numérica, usando escalas cada
vez menores, associadas a submiultiplos da unidade de medida, ou seja, a subunidades:

0 I 11925

N+

Figura 1.22: Aproximacao de segmento de medida igual a % = 1,125 na escala de 1 unidade de medida

0 1 1,125 2

Figura 1.23: Aproximagdo de segmento de medida igual a % = 1,125 na escala de % da unidade de
medida

T
0 11125 2

Figura 1.24: Aproximacao de segmento de medida igual a % = 1,125 na escala de ﬁ da unidade de
medida

Em cada segmento, usamos aproximacoes sucessivas do nimero % ou de sua representacao decimal
1,125: aproximamos por 1, usando a escala da unidade de medida; na segunda reta, por 1,1, usando a
subunidade de % da unidade de medida, em uma escala 10 vezes menor que a original; na terceira, por
1,12, em termos da subunidade de 1—(1)0 da unidade de medida, em uma escala 100 vezes menor que a
original.

A aproximacao seguinte, usando a subunidade de ﬁ da unidade de medida, é representada na
reta por uma escala 1000 vezes menor, o que ja dificulta a visualizacdo. Para contornar essa dificuldade,
podemos dar um “zoom” apds outro na reta numérica, sempre ampliando 10 vezes, a cada “zoom”, a
figura anterior. Procedendo assim, obtemos a seguinte sequéncia de ampliacoes:
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1,1 1,2
51 1171125 1 1 1 1 1 1 1 1 ;
Figura 1.25: Aproximacdo de segmento de medida igual a % = 1,125 na escala de 0,1 = % da unidade
de medida
1,12 1,13
1’\10 I I 17]\-25 I I I I I I I 1’\20

Figura 1.26: Aproximagao de segmento de medida igual a % = 1,125 na escala de 0,01 = ﬁ da unidade
de medida

1,120 1,125 1,130

Figura 1.27: Aproximagdo de segmento de medida igual a % = 1,125 na escala de 0,001 = ﬁ da
unidade de medida

Discutamos, agora, o exemplo da expansao decimal do ntimero racional representado pela fracao %.
Na se¢ao 1.1.4, calculamos:

g = 1,285714285714285714 . ..

onde as reticéncias indicam que esta expansdo decimal é infinita. Observe que a sequéncia 285714
aparece periodicamente na expansao. Portanto, temos um exemplo de uma expansao decimal infinita
periddica.

Concluimos que ha niimeros racionais cujas expansoes sao

o finitas;
« infinitas e periddicas.

Podemos demonstrar que todos os nimeros racionais tém expansoes decimais de um desses dois tipos.
De modo mais geral, podemos provar que um nimero real tem expansio decimal finita ou infinita
periddica se, e somente se, é, de fato, um niimero racional. Portanto, os nimeros irracionais sdo os
nimeros reais cujas expansoes sao infinitas e nao-peridédicas.

Vejamos mais alguns exemplos dessas diferentes situagoes. Iniciemos por um exemplo de ntimero
racional com expansdo decimal finita. Temos, por exemplo, as fracbes que equivalem as divisdes
sucessivas de 9 por poténcias de 2, isto é, por 2, por 4, por 8, e assim por diante:

9 9 9
Sy 2 =22 S =112
p=4d =B = LB

Como 2 e 5 sdo fatores de 10, divisdes por multiplos de 2 e 5 geram expansoes decimais finitas. Dado
um numero natural m, temos:

@ — 5><E ou T — 2)(@
2 10 5 10
Exemplos de expansoes decimais infinitas, mas periddicas, sdo dadas pelas seguintes divisoes pelo nimero
3:
2 4 8
- =0,666... - =1,333... — =2,666...
3 3 3
32 i = o
L . £ AT
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De fato, temos, no primeiro desses exemplos, a seguinte expansao infinita:

2 120 1L e L 12
— = — X— —= —X—X X = —X — X =
371003 103 10 103
1 1 /1 1 2
= x4 —x[ —x64+ —x=
10 +10X<10X +10X3>
1 1 1 2

= —XxX64+ —x64+ —x=- = ...
10 100 100 3
e assim indefinidamente! Note que, a cada itera¢do ou passo do algoritmo da divisdo, a fracao
reaparece, multiplicada por poténcias negativas de 10.
Outra sequéncia de exemplos de niimeros racionais com expansoes decimais infinitas, mas periddicas,
sao obtidas pelas seguintes divisdes por 7 ou por multiplos de 7:

% =0,285714. .. % = 0,428571 ... ; =0,714285. ..

2
3

Exercicio 1.9 Verifique essas expansoes de 2/7, 3/7 e 5/7. Vocé observou algo de interessante sobre
os algarismos que formam essas expansoes? Qual seria a expansao de 4/77 E de 10/77

1.3.1 - Das expansoes decimais as fracoes

Na secao anterior, vimos varios exemplos de expansoes decimais, tanto finitas quanto infinitas e
periddicas, que representam niimeros racionais. Ou seja, dada uma fragdo, encontramos sempre uma
expansao decimal finita ou infinita e periddica que a representa.

No entanto, precisamos também demonstrar que toda expansao decimal finita ou infinita e periédica
representa uma fracio e, portanto, um nimero racional. Uma prova rigorosa desse teorema esta
além dos objetivos desse texto. No entanto, podemos ilustrar algumas ideias ou evidéncias dessa
correspondéncia. Ou seja, podemos mostrar exemplos de como partir de uma expansao decimal (finita
ou infinita e periédica) e determinar a fragdo (o nimero racional) representada por essa dada expansao.

Por exemplo, consideremos a dizima periddica, ou seja, a expansao decimal infinita periddica dada
por

0,666 . ..

que, como ja vimos, ¢ uma representacao decimal da fragdo % Comprovemos esse fato de outro modo.
Para tanto, escrevemos

x = 0,666...
= 0,6 4+ 0,06 + 0,006 + .. .

1 1
= 0.6+ 75%0.6+ 75%0.06 + ...

1
_0,6+1—0x<0,6+0,06+...>

1
= 0,6 + EXZ‘

Note que a expressao entre parénteses, depois da quarta igualdade, tem infinitas parcelas e é exatamente
igual a x. Concluimos que

T — %m 0,6,
ou seja,
9 6
10" 710
Assim, o nimero racional, ou seja a fragao, representada pela dizima periddica 0,666. .. é dado por
6
T = 9’

[\

ou seja, por x = 3.
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Observacdao 1.17 Pode ser demonstrado que toda dizima peridédica, ou seja, toda expansao decimal
infinita e peridédica representa uma fracdo, que serd chamada fragdo geratriz da dizima periddica.

Vejamos alguns exemplos de determinagao da fragdo geratriz no seguinte exercicio:

Exercicio 1.10 Determine a fragao geratriz, isto é, o nimero racional na forma fracionéria repre-
sentado pelas seguintes dizimas periddicas:

1) 0,616161.. ..
2) 2,476666 . ..

% Solucdo. 1) Escrevemos
x=0,616161.. .,

de modo que
x = 0,61+ 0,0061 + 0,000061 + ...

1 1
= 0,61 + —x0,61 + — x0,0061 + . . .

100 100
1
— 061+ — 1 1+. ..
0,6 +100X(O,6 40,0061 + )
0,61+ ——x
U T 1007

Concluimos que
1
r— ——x = 0,61,

100
ou seja, que
99 61
100"~ 100
Assim, a fragio geratriz procurada é 61
799

2) Desta vez, denotando por y a fracdo geratriz, temos

y = 2,47+ 0,006 + 0,0006 + 0,00006 + . ..

1 1 1
=24 — — —
AT + 100X0,6+ 100X0,06+ 100X0,006+

1
= 2,47+ ——x( 0,6 + 0,06 + 0,006 + . ..
, +100x<, + 0,06 + 0,006 + )

1 6
= 2,47+ mxg
24T 6

~ 100 " 900
Concluimos que a fragdo geratriz, nesse caso, é dada por

 UTX94+6 2229
Y= "900  ~ 900

Observacdo 1.18 Tente descobrir um padrao na forma da fragao geratriz! Isso tornara nossos calculos
bem mais rdapidos e diretos.

O seguinte exercicio é educativo, pois nos alerta para as sutilezas das somas que estamos realizando
e que envolvem as infinitas parcelas nas dizimas peridédicas. Se ndo levarmos em conta que estamos
lidando com a nogao de infinito, podemos chegar a paradoxos e erros légicos ou matemaéticos facilmente.
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Exercicio 1.11 Demonstre que o nimero 1 tem a seguinte expansao decimal na forma de dizima
periddica:
1=0,99999...

= Solucdo. Assim como nos célculos anteriores, escrevemos

z =0,999...
=0,94 0,09 4+ 0,009 + ...

1
=09+ —x(0,940,09+...)

10
=09+ = X
T
Logo,
1 9
r——r=—-
10 10
Deduzimos que
9 v 9
10710
e, portanto, z = 1. |
Observacdao 1.19 Acabamos de demonstrar, rigorosamente, que 0,999 ... = 1. Pelo fato de termos

infinitos algarismos iguais a 9 na expansao decimal infinita, o resultado é exatamente igual a 1. Se
usdssemos apenas expansoes finitas como, por exemplo, em 0,99 ou 0,999 ou 0,999999, o resultado
obtido seria aproximadamente igual a 1, mas diferente de 1 (de fato, menor que 1). Portanto, podemos
considerar que as expansoes decimais finitas sdo aproximacées, cada vez melhores e mais precisas, da
expansao decimal infinita.

Observacdo 1.20 Ao trabalhar com dizimas periédicas, devemos ser cuidadosos em tentar aplicar
os algoritmos da adicdo e multiplicagdo como fazemos no caso das expansoes decimais finitas. Por
exemplo, é valido que

2-0,333...=0,666...,
pois
2-0,333 21 2 0,666
. e =2X- = — =
) 3 3 )
Da mesma forma, temos
1 4 5
—4+—-=0,111...+0,444... =0,555... = —
9+9 ) +0, ) 9

Todavia, ndo é tdo imediato realizar a soma

| Ut

2
-+

7 =0,285714 ...+ 0,714285 ... = 0,999999. ..

usando as expansoes decimais infinitas, embora saibamos, obviamente, que

2 5 17 1
ToT 7 )
Analogamente, ndo é muito ébvio como calcular 2 - 0,666 . ... Nao é claro o que deve ser feito com

o “vai um” ao realizar a “distributividade” do fator 2 com as infinitas parcelas da soma infinita

i = 35
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em 0,666 . ... Esse problema pode ser evitado, lidando-se diretamente com as fragoes geratrizes das
dizimas periddicas. Por exemplo,

4
2:0666...=2-—=—=-=1333....
) 9 3 )

Exercicio 1.12 Calcule o resultado da divisao a seguir:

6,444 . ..
1,222...

 Soluc@o. Inicialmente, temos

4
6444, —6+04d4.. . —G4 -8
9 9
¢ 2 11
1222...=1+0222... =1+ - = —.
; + 0, ‘|'9 9
Logo,
6,444... 58/9 58 522
— = — = — =5272727...
1,222 .. 11/9 11 99 ’

Formula geral para obter a fracdo geratriz

Apesar do titulo acima, lhe encorajamos a nao decorar uma férmula para o calculo de fraces
geratrizes. Uma atitude muito melhor é, sempre que houver necessidade de calcular uma geratriz, aplicar
o método discutido nos exemplos acima, que é pratico, rapido e evita erros. Antes de prosseguir com
a leitura, também lhe encorajamos a transformar outras dizimas em fracdes geratrizes e, ao fazé-lo,
tentar descobrir por si s6 um padrdo nos resultados. Uma dica: o numerador serd uma “combinacao” do
anteperiodo com o periodo e o denominador serd uma sequéncia de 9’s e 0’s. Se vocé conseguir descobrir
sozinho um padrao valido para todas as transformacoes de dizimas e geratrizes, confira seu resultado
com o restante dessa secao.

Lembre-se de que, é costumeira decompor uma dizima peridédica como

32,675838383. . .,

do seguinte modo:
324 0,675 4+ 0,000838383 ...

em que temos a parte inteira, o nimero que corresponde a parcela a esquerda da virgula (dada por
32, nesse exemplo); anteperiodo, a parcela a direita da virgula que nao se repete (dado por 675, nesse
caso); e pelo periodo, a parcela a direita da virgula que se repete periodicamente (dado por 83, no
exemplo em tela). Podemos demonstrar, entdo, o seguinte mecanismo pratico para determinar a fragao
geratriz representada por uma dizima periddica:

A fragado geratriz de uma dizima peridédica cuja parte inteira € igual a zero é da forma:

(Anteperiodo com periodo) — (anteperiodo)
9...90...0 ’

onde a quantidade de 9’s é igual a quantidade de algarismos do periodo e a quantidade de 0’s é igual
a quantidade de algarismos do anteperiodo.

Por exemplo, observe a dizima periddica 0,213424242.... Seu anteperiodo é 213, que possui trés
algarismos, e seu periodo é 42, com dois algarismos. Logo, sua fragdo geratriz é:

21342 — 213 21129
99000 99000
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Por fim, caso a dizima periddica tenha uma parte inteira, basta somar essa parte inteira a fragdo geratriz
da parte nao inteira. Por exemplo:

7,3444 ... =740,3444... =

34—3 31
=7+ 9 —7—1—%
_90-7+31 _ 661
B 90 90

Observacdo 1.21 Cuidado com dizimas peridédicas negativas! Por exemplo,

3 12 4
-1333...=-1-0333..=—-1—-—=——=——.
’ ’ 9 9 3
Um erro comum seria escrever —1 + 0,333..., que nao é igual a —1,333.... De fato, —1+0,333... =

—0,666. . ..

1.3.2 - Expansées decimais e aproximacdes de niumeros irracionais

Nas segOes anteriores, vimos que nimeros racionais (e, claro, as fragdes que os representam) tém,
sempre, expansoes decimais finitas ou infinitas e periddicas, essas tltimas na forma de dizimas peridédicas.

Reciprocamente, vimos varios exemplos do seguinte fato: expansao decimais finitas ou infinitas e
periddicas sdo, sempre, representacoes de niimeros racionais. Vimos, em particular, como determinar o
numero racional representado por uma dada dizima peridédica, a chamada fragdo geratriz da dizima.

A questao, bem mais sutil, é se expansoes decimais infinitas e ndo-periédicas também representam
nimeros reais. Ja sabemos que os nimeros reais representados por expansoes decimais infinitas e
nao-peridédicas devem ser, necessariamente, niimeros irracionais.

Os numeros reais que tenham expansoes decimais infinitas e nao-periddicas sdo nimeros
irracionais.

Nesta secao, ndao estudaremos a questdo mais profunda sobre quais condig¢oes fazem com que uma
dada expansao decimal infinita e nao-peridédica convirja e represente um nimero real, ndo-racional.
Em vez disso, temos o objetivo mais modesto, mas muito importante, de entender as expansées decimais
(e as aproximagoes, portanto) de alguns nimeros irracionais especificos.

Vejamos, em nosso primeiro exemplo, como obter os primeiros algarismos da expansao decimal
(infinita e ndo-periddica) no niimero irracional /2. Sabemos que:

(1,4)%=1,96 e (1,5)%=2,25.

Logo,
14 < V2 <15

Melhorando essa aproximacao para mais casas decimais, observamos que:
(1,45)> = 2,1025  (1,425)% =2,030625  (1,4125)% = 1,99515625

A cada passo deste processo, escolhemos em qual intervalo deve estar a melhor aproximacio de v/2.
Temos, respectivamente, os seguintes intervalos encairados um no outro:

1,40 < V2 < 1,45,

em seguida,
1,400 < V2 < 1,425

e, finalmente,

1,4125 < V2 < 1,4250.
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Essas aproximagoes podem ser representadas geometricamente nas seguintes cépias da reta numérica. A
cada etapa, consideramos % da unidade de medida usada na reta imediatamente anterior (lembre da
ideia do “zoom” que usamos antes):

Figura 1.28: Aproximacao de segmento de medida igual a /2 na escala de 0,1 = % da unidade de
medida

Figura 1.29: Aproximacido de segmento de medida igual a v/2 na escala de 0,01 = ﬁ da unidade de
medida

1,400 V2 1,425

Figura 1.30: Aproximacao de segmento de medida igual a v/2 na escala de 0,001 = ﬁ da unidade de
medida

Analisando a terceira das retas numéricas, deduzimos uma aproximacao ainda mais precisa de v/2,
com quatro casas decimais, a saber:

1,4125 < V2 < 1,4150.

Para sermos mais precisos, como o ponto /2 estd, na figura, a direita do ponto médio entre 1,4125 e
1,4150, teriamos
1,41375 < v/2 < 1,41500.

Estas aproximacdes, obtidas partindo cada intervalo ao meio e mantendo aquele em que estd contido
o nimero /2, poderiam prosseguir indefinidamente: jamais obterfamos uma expansio decimal finita,
independentemente de quantas casas decimais considerdssemos, que fosse ezatamente igual a v/2. O que
obtemos, de fato, sdo aproximagoes racionais cada vez mais precisas de um ntmero irracional.

Observacdo 1.22 O mesmo ocorre com qualquer nimero irracional: nao é possivel obter uma
expansao decimal finita, ou mesmo infinita e periédica, de um nimero irracional. Nao se trata de
limitagoes nossas ou dos computadores, mas de uma impossibilidade matemética!

Se, por exemplo, vocé quiser conhecer uma aproximacao do nimero 7w com 100000 casas decimais,
visite a pagina

http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

Nesta outra pagina, ha muita informacgao interessante sobre 7, incluindo o papel desse nimero em
calculos cientificos em Astronomia e outras areas:

https://www.youtube.com/watch?v=vY6965UdcLI

I Exercicio 1.13 Obtenha aproximacdes de v/5 e da razio aurea ¢ = (1 ++/5)/2 por niimeros racionais.
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Exercicio 1.14 Observe a reta numérica da figura abaixo, a qual se encontra dividida em segmentos
de mesmas medidas. Responda cada um dos itens a seguir:

(a) Qual ponto marcado na reta corresponde ao nimero real 3/47
(b) Qual ponto marcado na reta mais se aproxima do niimero /2?7

P T U
| |
I I

2

% Solucdo. (a) Veja que 3/4 é uma fracio que representa o niimero racional obtido dividindo-se o
segmento unitario (do ponto 0 ao ponto 1 na reta numérica) em 4 pedagos e tomando-se 3 deles. Logo,
estd entre 0 e 1. O tnico ponto marcado na figura que estd entre 0 e 1 é o ponto S. Assim, essa deve
ser a resposta correta.

De todo modo, estudemos este problema em mais detalhes: temos marcados na escala os niimeros
inteiros de —4 a 4. Dessa forma, cada segmento entre dois niimeros inteiros consecutivos tem comprimento
1. Veja que cada um desses segmentos de comprimento 1 foi dividido, na figura, em 4 pequenos segmentos
de mesmo comprimento. Assim cada um deles possui comprimento 1/4. Para chegar ao nimero 3/4
devemos andar, a partir do niimero 0 e no sentido positivo, 3 vezes o segmento de comprimento 1/4,
parando sobre o ponto S.

(b) Veja que 1 < 2 < 4, logo, 1 < V2 < 2. Assim, o ponto que melhor aproxima v/2 deve estar entre
os numeros 1 e 2 na reta numérica. O tnico ponto demarcado nesse intervalo na figura do enunciado
é o ponto T. Veja que v/2 é um ntimero irracional, de modo que ele ndo possui uma representacao
decimal com uma quantidade finita de algarismos. Mas, podemos obter aproximacoes melhores do que a
estimativa acima. Por exemplo, sabemos que (1,4)? < 2 < (1,5)?, logo, 1,4 < v/2 < 1,5. Isso condiz com
a posicao do ponto T', que estd um pouco & esquerda da marca correspondente ao valor 1,5. Observacao:
com o auxilio de uma calculadora, podemos checar que v/2 vale aproximadamente 1,414. |

1.4 - Exercicios resolvidos e propostos

Sequéncia 1

Exercicio 1.15 Marque as alternativas que correspondem a nimeros racionais:

) 1,5;

e

) V/5;

(d) —0,222..;
) 80,1/129;
) 1,4241;
)

Solucdo. Como vimos, os niimeros V5 e ™ ndo sdo racionais. Por outro lado, todos os demais
numeros listados aqui sdo racionais. Temos que 1,5 = %, uma fragdo, logo, racional. Temos que 7
é inteiro, logo, é racional (podemos escrever 7 = %) O nimero —0,222... é uma dizima periédica,
portanto, também racional. O niimero 80,1/129, apesar de nédo estar representado como uma fracao de
dois inteiros, pode ser reescrito como 81%’91 = %, de forma que também é racional. Por fim, o niimero
1,4241 é uma aproximacio de v/2 com 4 casas decimais. Apesar de /2 ser irracional, o nimero 1,4241
possui uma quantidade finita de casas decimais, logo, é racional; note que ele pode ser escrito como

__ 14241
1,4241 = 14241 ]
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Exercicio 1.16 Marque cada afirmac¢ao como verdadeira ou falsa e justifique sua resposta.

) Todo ntimero natural é inteiro?
) Todo ntmero inteiro é natural?
(¢) Todo ntimero inteiro é racional?
) Todo ntmero irracional é racional?
) Todo ntimero inteiro é real?
) Todo ntmero é real?

" Solucdo. (a) Verdadeira. O conjunto dos niimeros naturais é formado pelos niimeros inteiros néo
negativos. Em particular, todos eles sdo inteiros.

(b) Falsa. O conjunto dos ntimeros inteiros inclui os nimeros negativos, os quais ndo sdo naturais.

(c) Verdadeira. Ntumeros racionais sdo aqueles que podem ser representados por fragdes de inteiros.
Para escrever um ntmero inteiro na forma de fragio, basta colocar o proprio niimero como
numerador e 1 como denominador.

(d) Falsa. O conjunto dos niimeros irracionais é composto por todos os niimeros que nao sao racionais.

(e) Verdadeira. Todos os naturais, inteiros, racionais e irracionais sdo reais. De fato, o conjunto dos
reais é composto pela unido dos conjuntos dos racionais e dos irracionais.

(f) Falsa. Existem outros conjuntos numéricos (o conjunto dos nimeros complexos, por exemplo),
que contém o conjunto dos nimeros reais, mas também contém ntmeros que sdo nao-reais.

Exercicio 1.17 — PUCCAMP 2000. Considere os conjuntos: N dos niimeros naturais, Q dos nimeros
racionais, Q4 dos nimeros racionais ndo negativos e R dos niimeros reais. O ntimero que expressa:
(a) a quantidade de habitantes de uma cidade é um elemento de Q. , mas nao de N.
(b) a medida da altura de uma pessoa é um elemento de N.

(c) a velocidade média de um veiculo é um elemento de Q, mas nao de Q.

(d) o valor pago, em reais, por um sorvete é um elemento de Q..

(e) a medida do lado de um tridngulo é um elemento de Q.

Exercicio 1.18 — UTF-PR 2012. Indique qual dos conjuntos abaixo é constituido somente de niimeros
racionais.

(d) {v3,V64, 7,2}
(e) {-1,0,/3,%

Sequéncia 2

Exercicio 1.19 Calcule a representacao fracionaria de cada uma das seguintes dizimas periddicas,
admitindo que os padroes sugeridos realmente se mantém:

(a) 0,010101...
(b) 0,123123123. ..
(c) 0,999...

Exercicio 1.20 — Prova Brasil-2011. Em uma corrida de rua, os corredores tinham que percorrer 3 km,
entre uma escola e uma Igreja. Joaquim ja percorreu 2,7 km, Jodo percorreu 1,9 km, Marcos percorreu
2,4km e Mateus percorreu 1,5 km. Qual corredor estd representado pela letra L, na Figura 1.317
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I (a) Mateus. (b) Marcos. (c) Joao. (d) Joaquim.

I o wm LN [[]

k 1k 2k k
Escola 0km o o Skm Igreja

Figura 1.31: corredores ao longo do caminho entre a escola e a igreja.

Solucdo. Observando o nimero de quilémetros percorridos por cada corredor, veja que os tnicos
que percorreram entre dois e trés quilometros foram Marcos, com 2,4km, e Joaquim, com 2,7 km. Logo,
eles sdo representados, em alguma ordem, pelas letras L e N (que sdo os pontos marcados entre os
nimeros 2 e 3 na escala). Como 2,4 < 2,7 e L estd a esquerda de N, temos que a letra L representa o
corredor que percorreu 2,4 km, ou seja, Marcos. Logo, a resposta correta é a alternativa (b). |

Exercicio 1.21 Calcule a representagao decimal do nimero 22/7. O resultado possui uma quantidade
finita ou infinita de casas decimais? Caso seja uma dizima, indique seu periodo. Este ntmero é
conhecido como uma boa aproximacao para 7. Qual é a estimativa do erro que se comete caso esse
numero seja utilizado para aproximar 7.

Solucdo. Como 22/7 é um ntmero racional, j& sabemos que sua representagao decimal ou terd
uma quantidade finita de digitos ou serda uma dizima peridédica. Ao efetuar a divisdo, precisamos ter
paciéncia (ou usar uma calculadora) para perceber que se trata de uma dizima, pois seu periodo tem 6
algarismos. A representacio decimal obtida é 3,1428571428571. . ..

Ela é uma 6tima aproximagdo de m, mas nao é exata e nem poderia ser, j4 que m é um nimero
irracional. Apenas as duas primeiras casas decimais sdo corretas, se compararmos com a expansio
decimal de 7:

m = 3,14159265358979323846264338327950288419716939937 . . .

Portanto, o erro que se comete ao aproximar m por tal nimero é menor que 0,01.

Observacdo 1.23 — Curiosidade. O ndmero inteiro 142.857 (cujos algarismos sdao obtidos pelo
periodo da representagao decimal de 22/7 e também de 1/7) é muito famoso por ter uma propriedade
bastante curiosa. Quando o multiplicamos por 2, 3, 4, 5 ou 6, obtemos sempre os mesmos algarismos
apenas trocando sua ordem. Mas, quando o multiplicamos por 7, obtemos 999 999.

Exercicio 1.22 Explique o porqué das afirmagoes a seguir serem falsas.

(a) A intersecgao do conjunto dos niimeros racionais com o conjunto dos niimeros irracionais tem 1
elemento.
(b) A divisao de dois ntiimeros inteiros ndo-nulos é sempre um ntmero inteiro.
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Sequéncia 3

Exercicio 1.23 Considere os conjuntos A = {r e R: -5 <z <4} e B={xr e R: -3 <z <8}
Quais nimeros reais estao na intersecdo dos conjuntos A e B, ou seja, pertencem aos dois conjuntos
simultaneamente?

Exercicio 1.24 — ENEM 2015. Deseja-se comprar lentes para éculos. As lentes devem ter espessuras
mais proximas possiveis da medida 3,021 mm. No estoque de uma loja, hé lentes de espessuras:
3,10 mm; 3 mm; 2,96 mm; 2,099 mm e 3,07 mm. Se as lentes forem adquiridas nessa loja, a espessura
escolhida sera, em milimetros, de

(a) 2,099. (b) 2,96. (c) 3,021. (d) 3,07. (e) 3,10.

registram as temperaturas minima e maxima do dia anterior e os filetes na cor cinza registram a
temperatura ambiente atual, ou seja, no momento da leitura do termoémetro.

Pas
.

L/

Por isso ele tem duas colunas. Na da esquerda, os niimeros estdo em ordem crescente, de cima
para baixo, de —30 °C até 50 °C. Na coluna da direita, os nimeros estdo ordenados de forma crescente,
de baixo para cima, de —30°C até 50 °C.

A leitura é feita da seguinte maneira:

e a temperatura minima é indicada pelo nivel inferior do filete preto na coluna da esquerda.
e a temperatura maxima ¢é indicada pelo nivel inferior do filete preto na coluna da direita.
e a temperatura atual é indicada pelo nivel superior nos filetes cinzas nas duas colunas.

Qual é a temperatura maxima mais aproximada registrada nesse termdémetro?

(a) 5°C. (b) 7°C. (c) 13°C. (d) 15°C. (e) 19°C.

Exercicio 1.26 — PUC. Para a = 2,01, b=4,2 e ¢ = 7/3, temos:

(a) a<b<e (b) b<c<a. (c) c<b<a. (d) e<a<b. (e) b<a<e.

Exercicio 1.27 — ENEM 2012. Num projeto da parte elétrica de um edificio residencial a ser construido,
consta que as tomadas deverao ser colocadas a 0,20 m acima do piso, enquanto os interruptores
de luz deverdo ser colocados a 1,47 m acima do piso. Um cadeirante, potencial comprador de um

Exercicio 1.25 — ENEM 2017. No modelo de termometro da figura a seguir, os filetes na cor preta
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apartamento desse edificio, ao ver tais medidas alerta o construtor para o fato de que elas nao
contemplarao suas necessidades. Os referenciais de alturas (em metros) para atividades que nao
exigem o uso de for¢a sdo mostrados na figura seguinte.

LI maxima

]
o ol

+ 1240 minima
B

Uma proposta substitutiva, relativa as alturas de tomadas e interruptores, respectivamente, que
atendera aquele potencial comprador é:

(a) 0,20m e 1,45m.
(b) 0,20m e 1,40m.
(c¢) 0,25m e 1,35m.
(d) 0,25m e 1,30 m.
(e) 0,45m e 1,20 m.

Sequéncia 4

Exercicio 1.28 — UEPG 2010 - adaptado. Em cada alternativa, assinale V para verdadeiro ou F para
falso:

() O ntmero real representado por 0,5222... é um ntmero racional.

() O quadrado de qualquer nimero irracional é um ntmero racional.

() Se m e n sdo ntmeros irracionais, entdo mn pode ser racional.

() O ntimero real v/3 pode ser escrito na forma ¢, onde a e b sdo inteiros e b # 0.
() Toda raiz de uma equacao algébrica de segundo grau é um nimero real.

Exercicio 1.29 — PUC-RJ 2007. Os niimeros m e n sdo tais que 4 < m < 8 e 24 < n < 32. O maior
valor possivel para m/n é:

(a) 1/2. (b) 1/3. (c) 1/6. (d) 1/5. (e) 1/8.

Exercicio 1.30 E verdade que o produto de dois niimeros irracionais é sempre um irracional? Justifique
sua resposta.

= Solucdo. Falso. O produto de dois niimeros irracionais pode ser um irracional, mas também pode
ser um racional. Por exemplo V2 e /8 sdo nlmeros irracionais, mas seu produto V2-v/8=V16=4¢
um numero natural, logo, um racional. |

Exercicio 1.31 — UFF 2010. Segundo o matematico Leopold Kronecker (1823-1891), “Deus fez os
niumeros inteiros, o resto é trabalho do homem.”

Os conjuntos numéricos sdao, como afirma o mateméatico, uma das grandes invenc¢ées humanas.
Assim, em relagdo aos elementos desses conjuntos, é correto afirmar que:
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o produto de dois ntimeros irracionais é sempre um ntmero irracional.
a soma de dois niimeros irracionais é sempre um ntmero irracional.

Exercicio 1.32 — ENEM 29 aplicagdo 2010. Para dificultar o trabalho de falsificadores, foi lancada
uma nova familia de cédulas do real. Com tamanho varidvel — quanto maior o valor, maior a nota — o
dinheiro novo tera varios elementos de seguranca. A estreia sera entre abril e maio, quando comecam
a circular as notas de R$ 50,00 e R$100,00. As cédulas atuais tém 14 cm de comprimento e 6,5 cm de
largura. A maior cédula serd a de R$ 100,00, com 1,6 cm a mais no comprimento e 0,5cm cm maior
na largura. Quais serdao as dimensoes da nova nota de R$ 100,007

15,6 cm de comprimento e 6 cm de largura.
15,6 cm de comprimento e 6,5 cm de largura.

(a
(b

)
)
(¢) 15,6 cm de comprimento e 7cm de largura.
(d) 15,9 cm de comprimento e 6,5cm de largura.
)

15,9 cm de comprimento e 7 cm de largura.

(e

verdadeira para quaisquer z e y):

(a) = -y é racional.

(b) y -y é irracional.
) x + y é racional.
)
) x

o

— y + /2 é irracional.
+ 2y é irracional.

(e

Exercicio 1.34 Para que valores reais de x a expressdo abaixo ndo é um ntmero real?

4dr+1
2x2 — 8

Exercicio 1.35 O ndimero 0,112123123412345... possui um padrao em suas casas decimais. No
primeiro passo escrevemos o numero 1, no segundo escrevemos os numeros 1 e 2, no terceiro 1, 2 e 3,
e assim sucessivamente, sempre acrescentando os algarismos de todos os primeiros inteiros positivos
em sua representagao decimal (OBS: no décimo primeiro passo, serdo adicionados os algarismos
12...91011.) Apesar de existir um padrao que descreve os algarismos da parte decimal desse niimero,
ele é irracional. Justifique essa afirmagcao, explicando o porqué desse niimero nao ter um periodo, no
sentido de dizimas.

‘ Exercicio 1.33 — ESPCEx 2006. Se z é racional e y é irracional, entdo (qual das afirmativas é a tnica
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2 Tarefas de revisao

2.1 - Tarefas relativas a nGmeros naturais e racionais

Figura 2.1: Fonte: Secretaria do Esporte e Juventude - Governo do Estado do Ceard

Segundo a Wikipedia, o Casteldo tem capacidade para 63903 pessoas. Veja em https://pt.
wikipedia.org/wiki/Estadio_Governador_Placido_Castelo

Exercicio 2.1 A posigao do algarismo 0 torna os seguintes nimeros diferentes uns dos outros:

e 63 930
63 903
e 63093
* 60 393

1) Explique por qué.
2) Escreva esses nimeros em ordem crescente.
3) Qual o valor posicional do algarismo 9 em cada um desses ntimeros?

Exercicio 2.2 O estddio do Maracana tem capacidade para 78 838 pessoas. Esse ntimero pode ser
decomposto como

a) 7 milhares, 8 centenas e 38 unidades.
b) 7 milhares, 88 dezenas e 38 unidades.
c¢) 78 milhares, 83 dezenas e 8 unidades.
d) 78 milhares, 83 centenas e 8 unidades.

Exercicio 2.3 O estddio do Morumbi tem capacidade para 67052 pessoas. Esse nimero pode ser
decomposto como

a) 6 dezenas de milhar, 75 dezenas e 2 unidades.
b) 6 dezenas de milhar, 705 dezenas e 2 unidades.
c) 67 dezenas de milhar, 5 dezenas e 2 unidades.
d) 67 milhares, 5 centenas e 2 unidades.
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Exercicio 2.4 O estddio Mané Garrincha, em Brasilia, tem capacidade para 72788 pessoas. Esse
nimero pode ser decomposto como

a) 7000 + 2000 + 780 + 8.
b) 70000 + 2000 + 78 + 8.
¢) 70000 + 2000 + 780 + 8.
d) 7200 + 78 + 8.

Identifique o erro nas alternativas incorretas.

Exercicio 2.5 1) Arredonde o nimero 63 903 para as unidades de milhar mais préximas.
2) Arredonde o ntimero 63 903 para as centenas mais préximas.

I Exercicio 2.6 Qual o sucessor de 63 0997 E o antecessor de 64 0007
I Exercicio 2.7 O ntmero 63 903 estd mais préximo de 64 000 ou de 63 0007

Exercicio 2.8 A tabela mostra a capacidade de quatro conhecidos estadios de futebol no Brasil:

Castelao 63903
Morumbi 67052
Mineirao 78 838
Mané Garrrincha | 72788

1) Qual desses estadios tem a maior capacidade?
2) Qual desses estadios tem a menor capacidade?
3) Quantos lugares ao todo, aproximadamente, tém esses quatro estddios?

Exercicio 2.9 Em uma partida de futebol do classico-rei CearédxFortaleza, foram ocupados % 3 do total
dos 63903 assentos do Castelao. Quantos assentos foram ocupados?

Exercicio 2.10 Qual dos seguintes niimeros ¢ maior: do total dos 63 903 assentos do Castelao ou %
do total dos 67052 desses assentos?

Exercicio 2.11 Qual dos seguintes nimeros ¢ maior: 3 L de 63903 ou 3 L de 639037

14
Exercicio 2.12 Qual dos seguintes nimeros é maior: T ou 37

numérica.

8 9
Exercicio 2.14 Represente as fracoes 3 e 1 como numeros decimais.

Exercicio 2.15 Marque os nimeros 93, 99 e 112 na reta numérica:

Y

1 4 4 4 4 4 1 4 4 4 4 4 1 4 4 4 4 4 1
i t t t t t i t t t t t i t t t t t i

8 9
| Exercicio 2.13 Qual dos seguintes nimeros é maior: 3 ou 1‘7 Represente as duas fragdes na reta
‘ 96 102 108 14 120
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Exercicio 2.16 Marque os numeros 1/4, 1/3, 1/2 e 2/3 na seguinte reta numérica:

0 1/6 2/6 3/6 4/6 5/6 6/6

Exercicio 2.17 A distancia entre duas marcagoes consecutivas na reta numeérica é de 1 unidade. Sendo
assim, indique as marcagoes correspondentes aos numeros 1001, 1011 e 1100, respectivamente, nas
retas numeéricas a seguir.

I
998 999 1008

!
1005

|
1094

¢ de 10 unidades. Sendo assim, indique os nimeros correspondentes a essas marcagoes:

881 891

! I
9020 9030

I I
9069 9089

Exercicio 2.19 Na reta numérica, as letras indicam a localizagdo de alguns niimeros.

190 A B C D 290

A letra que indica a localizacdo do niimero 240 nessa reta numérica é

a) A b) B c) C d) D

Exercicio 2.20 Na reta numérica, as letras indicam a localizacio de alguns niimeros.

A letra que indica a localizacdo do niimero 1035 nessa reta numérica é

a) A b) B c) C d) D

As letras nas alternativas incorretas marcam que nimeros?

‘ Exercicio 2.18 Agora, suponha que a distdncia entre duas marcacoes consecutivas nas retas numéricas
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Exercicio 2.21 Na reta numérica, as letras indicam a localizacdo de alguns ntimeros:

|
990 A B C D 1090

A letra que indica o ponto mais préximo da localiza¢do do nimero 1048 nessa reta numérica é

a) A b) B c) C d) D
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— Roda de Matemaética: https://www.rodadematematica.com.br/

— OBMEP: http://www.obmep.org.br/provas.htm

— Canguru: https://www.cangurudematematicabrasil.com.br

e Alguns canais e videos

— Isto é Matematica: https://www.youtube.com/c/istoematematica

— OBMEP: https://www.youtube.com/user/0OBMEPOficial

— Matemaniaca: https://www.youtube.com/channel/UCz4Zuqt j9fokXH68gZImCdA
— Numeros na BBC Brasil: https://www.youtube.com/watch?v=Kgt3UggJ70k

— Marcus Du Sautoy, The Code, BBC.

o Referéncias para desenvolvimento profissional

— Boaler, Jo. Mentalidades matematicas. Porto Alegre, Penso, 2018.

— Gauthier, Clermont et al. Ensino explicito e desempenho dos alunos: a gestdo dos aprendiza-
dos. Petropdlis, RJ: Vozes, 2014.

— Dehaene, Stanislas. The number sense: how the mind creates mathematics - revised and

updated edition. Oxford: Oxford University Press, 2011.

Oakley, Barbara et. al. A mind for numbers: how to excel at math and science. New York:

TarcherPerigee, 2014.

— QOakley, Barbara et al. Uncommon sense teaching. New York: TarcherPerigee, 2021.

o Referéncias sobre a teméatica do caderno

— Bellos, Alex. Alex no pais dos niimeros. Sdo Paulo: Companhia das Letras, 2011.

— Dorichenko, S. Um circulo matematico de Moscou. Rio de Janeiro: IMPA, 2011.

— Holanda, Bruno; Chagas, Emiliano. Circulos de Matematica da OBMEP, volume 1: primeiros
passos em combinatoria, aritmética e algebra. Rio de Janeiro: IMPA, 2018.

— Wu, Hung-Hsi. Compreender os Nimeros na Matemaética Escolar. Porto: Porto Editora &
Sociedade Portuguesa de Matematica

— Murcia, Joseangel. Y me llevo una. Zaragoza: Nordica Libros, 2019.

— Stillwell, John. Elements of Mathematics. Princeton: Princeton University Press, 2016.

o Materiais interessante sobre incomensurabilidade/irracionalidade ou relacionado as cardinalidades
de conjuntos infinitos:

— Site das Matematicas Visuales: http://www.matematicasvisuales.com/english/html/
geometry/goldenratio/pentagondiagonal .html

— Notas de aula sobre expansoes decimais: https://docs.ufpr.br/~akirilov/ensino/2017/
docs/racionais_kirilov_linck.pdf

— Sobre os fundamentos da Matematica, em Veritasium: https://www.youtube.com/watch?
v=HeQX2HjkcNo

— Sobre a secgao durea ou numero de ouro, em Numberphile: https://www.youtube.com/
watch?v=sj8Sg8qnjlg
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